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11/09/2025, Week 1

Exercise 1. Let f(x, y) =


x2y

x2 + y2
, (x, y) ̸= (0, 0)

0, (x, y) = (0, 0)

.

(1) Show that f is continuous at (0, 0).

(2) Compute the partial derivatives ∂f
∂x

and ∂f
∂y

at (0, 0).

(3) Determine whether f is differentiable at (0, 0).

(4) Discuss the relationship between continuity, existence of partial derivatives, and differentiability
for f at (0, 0).

Solution 2. (1) For any (x, y) → (0, 0),

|f(x, y)| =

∣∣∣∣∣ x2y

x2 + y2

∣∣∣∣∣ ≤ |y|.

So f(x, y) → 0 as (x, y) → (0, 0). Thus, f is continuous at (0, 0).

(2) By definition,
∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

Similarly,
∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

(3) f is differentiable at (0, 0) if

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− fx(0, 0)x− fy(0, 0)y√
x2 + y2

= 0.
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Here, f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 0, so

f(x, y)√
x2 + y2

=
x2y

(x2 + y2)3/2
.

Along x = t, y = t,
t2t

(t2 + t2)3/2
=

t3

(2t2)3/2
=

t3

23/2t3
=

1

23/2
.

The limit is not 0 along this path, so f is not differentiable at (0, 0).

(4) For f at (0, 0), we see:

• f is continuous at (0, 0).

• The partial derivatives exist at (0, 0).

• f is not differentiable at (0, 0).

This example shows that continuity and existence of partial derivatives at a point do not
guarantee differentiability at that point.

Exercise 3 (Partial derivatives of homogeneous functions). Complete the following exercises.

(1) (Warm up) Compute the following partial derivatives (∂f
∂x

, ∂f
∂y

, ∂f
∂z

):

f(x, y, z) = (x− 2y + 3z)2; f(x, y, z) =
x√

x2 + y2 + z2
; f(x, y, z) =

(
x

y

) y
z

.

(2) A function f(x, y, z) is called a homogeneous function of degree n, if for any ρ > 0, we have
f(ρx, ρy, ρz) = ρnf(x, y, z). Now verify that the above functions are homogeneous and find their
degrees n.

(3) (Euler’s theorem) Show that x∂f
∂x

+ y ∂f
∂y

+ z ∂f
∂z

= nf(x, y, z).
(Hint: Differentiate the equation f(ρx, ρy, ρz) = ρnf(x, y, z) with respect to ρ and then set ρ = 1)

(4) Conversely, show that if f(x, y, z) satisfies the above equation, then f(x, y, z) is a homogeneous
function of degree n.

(5) Show that fx(x, y, z), fy(x, y, z) and fz(x, y, z) are homogeneous functions of degree n− 1.

(6) Prove that (x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z
)2f = n2f .
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(7) Examples:

∆(x1, x2, . . . , xn) = det



1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xn−1
1 xn−1

2 · · · xn−1
n


=

∏
1≤i<j≤n

(xj − xi).

Prove that
∑n

k=1 xk
∂∆
∂xk

= n(n−1)
2

∆ and
∑n

k=1
∂∆
∂xk

= 0.

Solution 4. (1) By direct computation, we have

• f(x, y, z) = (x− 2y + 3z)2:

∂f

∂x
= 2(x− 2y + 3z),

∂f

∂y
= −4(x− 2y + 3z),

∂f

∂z
= 6(x− 2y + 3z).

• f(x, y, z) =
x√

x2 + y2 + z2
:

∂f

∂x
=

y2 + z2

(x2 + y2 + z2)3/2
,

∂f

∂y
=

−xy

(x2 + y2 + z2)3/2
,

∂f

∂z
=

−xz

(x2 + y2 + z2)3/2
.

• f(x, y, z) =
(

x
y

) y
z :

∂f

∂x
=

y

z

(
x

y

) y
z−1

· 1
y
=

y

zx

(
x

y

) y
z

.

∂f

∂y
=

(
x

y

) y
z

[
1

z
ln
(
x

y

)
− y

z

1

y

]
=

f(x, y, z)

z
ln
(
x

y

)
− f(x, y, z)

z
.

∂f

∂z
= − y

z2

(
x

y

) y
z

ln
(
x

y

)
= − y

z2
f(x, y, z) ln

(
x

y

)
.

(2) • For f(x, y, z) = (x− 2y + 3z)2:

f(ρx, ρy, ρz) = (ρx− 2ρy + 3ρz)2 = ρ2(x− 2y + 3z)2 = ρ2f(x, y, z).

So, degree n = 2.

• For f(x, y, z) =
x√

x2 + y2 + z2
:

f(ρx, ρy, ρz) =
ρx√

(ρx)2 + (ρy)2 + (ρz)2
=

ρx

ρ
√

x2 + y2 + z2
=

x√
x2 + y2 + z2

.

So, degree n = 0.
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• For f(x, y, z) =
(

x
y

) y
z :

f(ρx, ρy, ρz) =

(
ρx

ρy

) ρy
ρz

=

(
x

y

) y
z

.

So, degree n = 0.

(3) Differentiate f(ρx, ρy, ρz) = ρnf(x, y, z) with respect to ρ:
d

dρ
f(ρx, ρy, ρz) = nρn−1f(x, y, z).

By the chain rule,
d

dρ
f(ρx, ρy, ρz) = xf ′

1(ρx, ρy, ρz) + yf ′
2(ρx, ρy, ρz) + zf ′

3(ρx, ρy, ρz).

Thus,
ρxf ′

1(ρx, ρy, ρz) + ρyf ′
2(ρx, ρy, ρz) + ρzf ′

3(ρx, ρy, ρz) = nρf(x, y, z).

Setting ρ = 1, we arrive at the result.

(4) Define

g(ρ) =
f(ρx0, ρy0, ρz0)

ρn
.

Then

g′(ρ) =
ρx0f

′
1(ρx0, ρy0, ρz0) + ρy0f

′
2(ρx0, ρy0, ρz0) + ρz0f

′
3(ρx0, ρy0, ρz0)

ρn · ρ
− nf(ρx0, ρy0, ρz0)

ρn+1
.

Noticing that xfx + yfy + zfz = nf(x, y, z), then the numerator equals nf(ρx0, ρy0, ρz0), so

g′(ρ) = 0.

For any ρ > 0, g(ρ) is a constant. Recalling that g(1) = f(x0, y0, z0), we have

g(ρ) = f(x0, y0, z0),

which implies the desired result.

(5) Let f be homogeneous of degree n. Then

f(ρx, ρy, ρz) = ρnf(x, y, z).

Differentiate both sides with respect to x:

ρf ′
1(ρx, ρy, ρz) = ρnf ′

1(x, y, z).

So,
f ′
1(ρx, ρy, ρz) = ρn−1f ′

1(x, y, z).

Thus, fx, fy, fz are homogeneous of degree n− 1.
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(6) If you see D := x ∂
∂x

+ y ∂
∂y

. By Euler’s theorem, we have

D(Df) = D(nf) = n2f.

This also could be directly verified by chain rule:(
x
∂

∂x
+ y

∂

∂y

)(
x
∂f

∂x
+ y

∂f

∂y

)
= x

(
∂f

∂x
+ x

∂2f

∂x2

)
+ xy

∂2f

∂x∂y
+ xy

∂2f

∂y∂x
+ y

(
∂f

∂y
+ y

∂2f

∂y2

)

= x
∂f

∂x
+ y

∂f

∂y
+ x

[
x
∂

∂x

(
∂f

∂x

)
+ y

∂

∂y

(
∂f

∂x

)]
+ y

[
x
∂

∂x

(
∂f

∂y

)
+ y

∂

∂y

(
∂f

∂y

)]

= nf + x · (n− 1)
∂f

∂x
+ y · (n− 1)

∂f

∂y

= nf + (n− 1)nf

= n2f.

Remark (The other understanding): we see that (x ∂
∂x

+y ∂
∂y
)2 equals to x2 ∂2

∂x2 +2xy ∂2

∂x∂y
+y2 ∂2

∂y2 .
Then we have

x2 ∂
2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2

∂2f

∂y2

= x

[
x
∂

∂x

(
∂f

∂x

)
+ y

∂

∂x

(
∂f

∂x

)]
+ y

[
x
∂

∂x

(
∂f

∂y

)
+ y

∂

∂y

(
∂f

∂y

)]

= x · (n− 1)
∂f

∂x
+ y · (n− 1)

∂f

∂y

= n(n− 1)f.

For the second understanding, try to prove that(
x
∂

∂x
+ y

∂

∂y

)m

f = n(n− 1) · · · (n−m+ 1)f. (1)

For m = 1, the equation is valid.
For m = k, we suppose that the equation is valid.
What we need to do is to prove that it holds for m = k + 1. As it holds for m = k, we have
k∑

i=0

(
Ci

kx
iyk−i ∂kf

∂xi∂yk−i

)∣∣∣∣∣
(tx,ty)

= n(n− 1) · · · (n− k + 1)f(tx, ty) = n(n− 1) · · · (n− k + 1)tnf(x, y).

Differentiate tk in both sides:
k∑

i=0

Ci
kx

iyk−i

(
∂kf

∂xi∂yk−i

)∣∣∣∣∣
(tx,ty)

= n(n− 1) · · · (n− k + 1)tn−kf(x, y). (2)
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Now we differentiate the both side of the above equation with respect to t. Noting the chain
rule

d

dt

 ∂kf

∂xi∂yk−i

∣∣∣∣∣
(tx,ty)

 = x

 ∂k+1f

∂xi+1∂yk−i

∣∣∣∣∣
(tx,ty)

+ y

 ∂k+1f

∂xi∂yk+1−i

∣∣∣∣∣
(tx,ty)

 .

Thus the t-derivative of the l.h.s of (2) equals to

k∑
i=0

Ci
kx

i+1yk−i ∂k+1f

∂xi+1∂yk−i

∣∣∣∣∣
(tx,ty)

+ Ci
kx

iyk+1−i ∂k+1f

∂xi∂yk+1−i

∣∣∣∣∣
(tx,ty)


=

k+1∑
i=1

Ci−1
k xiyk+1−i ∂k+1f

∂xi∂yk−i+1

∣∣∣∣∣
(tx,ty)

+
i∑

k=0

Ci
kx

iyk+1−i ∂k+1f

∂xi∂yk+1−i

∣∣∣∣∣
(tx,ty)

=
k+1∑
i=0

Ci
k+1x

iyk+1−i ∂k+1f

∂xi∂yk+1−i

∣∣∣∣∣
(tx,ty)

,

where we used Ci
k + Ci−1

k = Ci
k+1 for the last “=”.

Thus
k+1∑
i=0

Ci
k+1x

iyk+1−i ∂k+1f

∂xi∂yk+1−i

∣∣∣∣∣
(tx,ty)

= n(n− 1) · · · (n− k + 1)(n− k)tn−k−1f(x, y).

Taking t = 1 in the above equation, we reach that the equation (1) holds for m = k + 1.

(7) First, recall that ∆ is a homogeneous polynomial of degree d = n(n−1)
2

in the variables x1, . . . , xn

(since there are n(n − 1)/2 factors, each linear in xk). By Euler’s theorem for homogeneous
functions,

n∑
k=1

xk
∂∆

∂xk

=
n(n− 1)

2
∆.

Secondly, notice that ∆ admits the translation invariance, i.e., ∆(x1, . . . , xn) = ∆(x1 +

t, . . . , xn + t) for any t ∈ R.

0 =
∂∆

∂t
(x1, . . . , xn)

uk=xk+t
=

n∑
k=1

∂∆

∂uk

(u1, . . . , un) ·
duk

dt

∣∣∣
t=0

=
n∑

k=1

∂∆

∂xk

(x1, . . . , xn).
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