
Exercise Sheet – Mathematical Analysis III

Taiyang Xu∗

27/11/2025, Week 12

练习 1 (利用对称性).

(1) 求曲线积分 ∫
C
e−(x2+y2)[cos(2xy) dx+ sin(2xy) dy],

其中 C 是单位圆周, 方向为逆时针.

(2) 计算 ∫
L

x2 ds,

其中

L : x2 + y2 + z2 = a2, x+ y + z = 0.

解答 1. (1) 记 P (x, y) = e−(x2+y2) cos(2xy), Q(x, y) = e−(x2+y2) sin(2xy). 由于积分路径 C 是单位
圆周 x2 + y2 = 1, 在 C 上有 x2 + y2 = 1, 于是

P |C = e−1 cos(2xy), Q|C = e−1 sin(2xy).

原积分化为

I = e−1

∫
C

cos(2xy) dx+ sin(2xy) dy.

注意到被积函数关于原点中心对称. 具体地, 做变换 x → −x, y → −y, 路径 C 不变 (方向也不
变), 但 dx → − dx, dy → − dy, 而 cos(2(−x)(−y)) = cos(2xy), sin(2(−x)(−y)) = sin(2xy). 这
说明了该积分为 0.

(当然你也可以通过 Green 公式来验证这个事情) 令 D 为 C 所围成的单位圆盘. 根据格林公式:∫
C
P dx+Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.
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计算偏导数:

∂Q

∂x
=

∂

∂x

(
e−(x2+y2) sin(2xy)

)
= −2xe−(x2+y2) sin(2xy) + 2ye−(x2+y2) cos(2xy).

∂P

∂y
=

∂

∂y

(
e−(x2+y2) cos(2xy)

)
= −2ye−(x2+y2) cos(2xy)− 2xe−(x2+y2) sin(2xy).

相减得:
∂Q

∂x
− ∂P

∂y
= 4ye−(x2+y2) cos(2xy).

于是

I =

∫∫
D

4ye−(x2+y2) cos(2xy) dx dy.

积分区域 D 关于 x 轴对称 (即 y → −y), 被积函数 f(x, y) = 4ye−(x2+y2) cos(2xy) 关于 y 是奇

函数 (因为 y 是奇的, x2 + y2 是偶的, cos(2xy) = cos(−2xy) 是偶的). 因此, 该二重积分为 0.∫
C
e−(x2+y2)[cos(2xy) dx+ sin(2xy) dy] = 0.

(2) 曲线 L 是球面 x2 + y2 + z2 = a2 与平面 x+ y + z = 0 的交线, 它是一个大圆, 半径为 a, 圆心
在原点. 由于 x, y, z 在 L 上的地位是对称的, 故∫

L

x2 ds =
∫
L

y2 ds =
∫
L

z2 ds.

因此 ∫
L

x2 ds = 1

3

∫
L

(x2 + y2 + z2) ds.

在曲线 L 上, x2 + y2 + z2 = a2 是常数, 所以∫
L

x2 ds = 1

3

∫
L

a2 ds = a2

3

∫
L

ds = a2

3
.

因为 L 是半径为 a 的圆周, 其长度为 2πa. 所以∫
L

x2 ds = a2

3
· 2πa =

2πa3

3
.

练习 2 (曲线积分化为定积分).

(1) 计算曲线积分 ∫
L

y dx+ z dy + x dz,
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这里

L :
x2

a2
+

y2

b2
+

z2

c2
= 1,

x

a
+

z

c
= 1, x, y, z ⩾ 0.

其中, a, b, c > 0, 从点 (a, 0, 0) 到点 (0, 0, c).

(2) 计算密度为常数 µ 的单层对数位势

u(x, y) =

∮
L

µ ln 1

r
ds,

这里 L 为圆周 ξ2 + η2 = R2, 且 r =
√
(ξ − x)2 + (η − y)2.

解答 2. (1) 曲线 L 的参数方程为:
x = at

y = b
√
2
√
t− t2

z = c(1− t)

, t 从1 变到0.

这里我们先计算微分:
dx = a dt, dz = −c dt.

对于 y:
dy = b

√
2

1− 2t

2
√
t− t2

dt.

代入积分表达式:

I =

∫ 0

1

[
b
√
2
√
t− t2 · a+ c(1− t) · b

√
2

1− 2t

2
√
t− t2

+ at · (−c)

]
dt

=

∫ 0

1

[
ab
√
2
√
t− t2 + bc

√
2
(1− t)(1− 2t)

2
√
t− t2

− act

]
dt.

经过繁复的计算, 我们有:

I =
ac

2
− π

√
2b(a+ c)

8
.

(2) 圆周 L 的参数方程为:
ξ = R cos θ, η = R sin θ, θ ∈ [0, 2π].

弧长元素 ds = R dθ. 为了使得被积函数简化, 记 x = ρ cos θ′, y = ρ sin θ′, 则

r =
√
R2 − 2Rρ cos(θ − θ′) + ρ2.
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于是

u(x, y) =

∮
L

µ ln 1

r
ds

=

∫ 2π

0

µ

(
−1

2
ln(R2 + ρ2 − 2Rρ cos(θ − θ′))

)
R dθ

= −µR

2

∫ 2π

0

ln(R2 + ρ2 − 2Rρ cos(θ − θ′)) dθ.

由于被积函数是以 2π 为周期的, 积分区间长度为 2π, 我们可以令 ϕ = θ− θ′, 积分值与 θ′ 无关:∫ 2π

0

ln(R2 + ρ2 − 2Rρ cos(θ − θ′)) dθ =

∫ 2π

0

ln(R2 + ρ2 − 2Rρ cosϕ) dϕ.

利用定积分公式:∫ 2π

0

ln(a2 + b2 − 2ab cosϕ) dϕ = 4π ln(max{a, b}), (a, b > 0).

我们分情况讨论:

• 当 ρ ≤ R 时 (点 (x, y) 在圆内或圆上), max{R, ρ} = R, 积分值为 4π lnR.

u(x, y) = −µR

2
· 4π lnR = −2πµR lnR.

• 当 ρ > R 时 (点 (x, y) 在圆外), max{R, ρ} = ρ, 积分值为 4π ln ρ.

u(x, y) = −µR

2
· 4π ln ρ = −2πµR ln ρ = −2πµR ln(x2 + y2).

综上所述:

u(x, y) =

−2πµR lnR, x2 + y2 = ρ2 ≤ R2

−2πµR ln(x2 + y2), x2 + y2 = ρ2 > R2
.

补充: 关于积分公式

J =

∫ 2π

0

ln(a2 + b2 − 2ab cosϕ) dϕ = 4π ln(max{a, b})

的证明. 由于被积函数是偶函数且周期为 2π, 我们有

J = 2

∫ π

0

ln(a2 + b2 − 2ab cosϕ) dϕ.

不妨设 a, b > 0 且 a ̸= b. 定义函数

I(a) =

∫ π

0

ln(a2 + b2 − 2ab cosϕ) dϕ.
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对参量 a 求导 (利用含参变量积分求导公式):

I ′(a) =

∫ π

0

2a− 2b cosϕ
a2 + b2 − 2ab cosϕ dϕ

=
1

a

∫ π

0

2a2 − 2ab cosϕ
a2 + b2 − 2ab cosϕ dϕ

=
1

a

∫ π

0

(
1 +

a2 − b2

a2 + b2 − 2ab cosϕ

)
dϕ

=
π

a
+

a2 − b2

a

∫ π

0

1

a2 + b2 − 2ab cosϕ dϕ.

利用常用积分公式
∫ π

0
dx

A+B cos x = π√
A2−B2 (其中 A2 > B2), 这里 A = a2 + b2, B = −2ab, 于是

√
A2 −B2 =

√
(a2 − b2)2 = |a2 − b2|.∫ π

0

1

a2 + b2 − 2ab cosϕ dϕ =
π

|a2 − b2|
.

代回 I ′(a) 的表达式:

I ′(a) =
π

a
+

a2 − b2

a
· π

|a2 − b2|
.

分情况讨论:

• 若 a > b, 则 |a2 − b2| = a2 − b2, 于是 I ′(a) = π
a
+ π

a
= 2π

a
. 积分得 I(a) = 2π ln a+ C1. 取

b = 0 (或令 a → ∞确定常数), I(a) =
∫ π

0
ln(a2) dϕ = 2π ln a,故 C1 = 0. 即 I(a) = 2π ln a.

• 若 a < b, 则 |a2 − b2| = −(a2 − b2), 于是 I ′(a) = π
a
− π

a
= 0. 即 I(a) = C2 (常数). 取

a = 0, I(0) =
∫ π

0
ln(b2) dϕ = 2π ln b, 故 C2 = 2π ln b.

综上, I(a) = 2π ln(max{a, b}). 最后回到原积分 J = 2I(a) = 4π ln(max{a, b}).

练习 3. 设 f(x, y) 为一连续函数, L 是一封闭的逐段光滑曲线, 证明:

u(x, y) =

∮
L

f(ξ, η) ln
(

1√
(ξ − x)2 + (η − y)2

)
ds

当 x → ∞, y → ∞ 时极限为 0 的充要条件是∮
L

f(ξ, η) ds = 0.

解答 3. 记 P (x, y) 为平面上一点, Q(ξ, η) 为曲线 L 上一点. 记 ρ =
√

x2 + y2. 当 x → ∞, y → ∞
时, ρ → ∞. 我们有

r =
√

(ξ − x)2 + (η − y)2 =
√
x2 + y2 − 2(xξ + yη) + ξ2 + η2 = ρ

√
1− 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2
.
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于是

ln 1

r
= − ln r = − ln ρ− 1

2
ln
(
1− 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2

)
.

代入 u(x, y) 的表达式:

u(x, y) =

∮
L

f(ξ, η)

− ln ρ− 1

2
ln
(
1− 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2

) ds

= − ln ρ

∮
L

f(ξ, η) ds− 1

2

∮
L

f(ξ, η) ln
(
1− 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2

)
ds.

记 A =
∮
L
f(ξ, η) ds, 以及

I(x, y) = −1

2

∮
L

f(ξ, η) ln
(
1− 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2

)
ds.

由于 L 是逐段光滑的闭曲线 (事实上, 它是有界闭曲线, 这一点将曲线在某一区间上参数化即可看
出), 则存在 M > 0 使得对于任意 (ξ, η) ∈ L, 有 |ξ| ≤ M, |η| ≤ M . 当 ρ → ∞ 时,

|δ| = | − 2(xξ + yη)

ρ2
+

ξ2 + η2

ρ2
| ⩽

√
ξ2 + η2

√
x2 + y2

ρ2
+

2M2

ρ2
=

√
2M

ρ
+

4M2

ρ2
→ 0.

因此 ln(1 + δ) → 0 关于 (ξ, η) ∈ L 一致成立. 由于 f(ξ, η) 在 L 上连续且 L 长度有限, f 有界, 故

lim
ρ→∞

I(x, y) = 0.

于是我们有渐近关系:
u(x, y) = −A ln ρ+ o(1), (ρ → ∞).

(⇐) 充分性: 若
∮
L
f(ξ, η) ds = 0, 即 A = 0. 则 u(x, y) = I(x, y). 由前述分析知

limρ→∞ u(x, y) = 0.
(⇒) 必要性: 若 limρ→∞ u(x, y) = 0. 假设 A ̸= 0. 则 u(x, y) = −A ln ρ + I(x, y). 当 ρ → ∞

时, 第一项 −A ln ρ 的绝对值趋于无穷大, 而第二项 I(x, y) 趋于 0. 这导致 |u(x, y)| → ∞, 与已知
条件矛盾. 因此必须有 A = 0, 即

∮
L
f(ξ, η) ds = 0.
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