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4/12/2025, Week 13

练习 1. 证明如下的不等式: ∣∣∣ ∫
L

P (x, y) dx+Q(x, y) dy
∣∣∣ ⩽ MC,

其中 C 是曲线 L 的弧长, M = max(x,y)∈L

√
P (x, y)2 +Q(x, y)2. 记圆周 LR : x2 + y2 = R2, 利用以上

的不等式估计:
IR :=

∫
LR

y dx− x dy
(x2 + xy + y2)2

,

并证明 limR→+∞ IR = 0.

解答 1. 设曲线 L 由参数方程

r(t) = (x(t), y(t)), t ∈ [a, b]

给出, 其弧长为

C =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

考虑线积分

I =

∫
L

P (x, y)dx+Q(x, y)dy =

∫ b

a

[
P (x(t), y(t))

dx

dt
+Q(x(t), y(t))

dy

dt

]
dt.

取绝对值并应用柯西-施瓦茨不等式

|I| ≤
∫ b

a

∣∣∣∣P dx

dt
+Q

dy

dt

∣∣∣∣ dt ≤ ∫ b

a

√
P 2 +Q2 ·

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

则

|I| ≤ M

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt = M · C.

对于积分 IR, 路径 LR 是圆周 x2 + y2 = R2, 其长度 C = 2πR. 这里 P (x, y) = y
(x2+xy+y2)2

,
Q(x, y) = −x

(x2+xy+y2)2
. 我们需要估计

√
P 2 +Q2 在 LR 上的最大值.

√
P 2 +Q2 =

√
y2 + (−x)2

(x2 + xy + y2)2
=

√
x2 + y2

(x2 + xy + y2)2
=

R

(x2 + xy + y2)2
.
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在圆周 x2 + y2 = R2 上, 利用极坐标 x = R cos θ, y = R sin θ:

x2 + xy + y2 = R2 +R2 cos θ sin θ = R2(1 +
1

2
sin(2θ)).

因为 −1 ≤ sin(2θ) ≤ 1, 所以

R2(1− 1

2
) ≤ x2 + xy + y2 ≤ R2(1 +

1

2
),

即
1

2
R2 ≤ x2 + xy + y2 ≤ 3

2
R2.

为了使
√
P 2 +Q2 最大, 分母 (x2 + xy+ y2)2 需要取最小值. 分母的最小值为 ( 1

2
R2)2 = 1

4
R4. 于是

M = max
(x,y)∈LR

√
P 2 +Q2 =

R
1
4
R4

=
4

R3
.

利用第一部分的不等式:
|IR| ≤ M · C =

4

R3
· 2πR =

8π

R2
.

当 R → +∞ 时, 8π
R2 → 0, 根据夹逼定理,

lim
R→+∞

IR = 0.

练习 2. 设 F⃗ (x, y) = P (x, y)⃗i+Q(x, y)⃗j 在开区域 D 内处处连续可微, 并且在 D 内任一圆周 C 上有:∮
C

F⃗ · n⃗ds = 0,

其中 n⃗ 是圆周外法线单位向量. 证明: 在 D 内恒有:

∂P

∂x
+

∂Q

∂y
≡ 0.

解答 2. 由于 n⃗ 是外法线单位向量, 所以

n⃗ = cos(n⃗, x)⃗i+ cos(n⃗, y)⃗j.

因此 ∮
C

F⃗ · n⃗ds =
∮
C

[
P (x, y) cos(n⃗, x) +Q(x, y) cos(n⃗, y)

]
ds =

∮
C

P (x, y)dy −Q(x, y)dx.

因此

0 =

∮
C

F⃗ · n⃗ds =
∮
C

P (x, y)dy −Q(x, y)dx =

∫∫
∆

(
∂P

∂x
+

∂Q

∂y

)
dx dy.
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记

g(x, y) =
∂P

∂x
+

∂Q

∂y
.

下面用反证法证明 g(x, y) ≡ 0. 假设存在一点 M0(x0, y0) ∈ D 使得 g(x0, y0) ̸= 0. 不妨设

g(x0, y0) > 0. 根据连续函数的保号性, 存在 M0 的一个邻域 (我们可以取为一个半径足够小的

圆盘) Dϵ ⊂ D, 使得对于任意 (x, y) ∈ Dϵ, 都有 g(x, y) > 0. 根据积分的单调性:∫∫
Dϵ

g(x, y) dx dy > 0.

这与已知条件 (任意圆盘上的二重积分为 0) 相矛盾. 同理, 若假设 g(x0, y0) < 0, 也会得出∫∫
Dϵ

g dσ < 0, 同样导致矛盾. 因此, 在 D 内恒有

∂P

∂x
+

∂Q

∂y
≡ 0.

练习 3. 设 F⃗ (x, y, z) = P (x, y, z)⃗i + Q(x, y, z)⃗j + R(x, y, z)k⃗ 在开区域 D 内处处连续可微, 并且在 D

内任一闭曲面 S 上有: ∫∫
S

F⃗ · n⃗dS = 0,

其中 n⃗ 是曲面外法线单位向量. 证明: 在 D 内恒有:
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
≡ 0.

解答 3. 根据高斯公式, 对于 D 内任意闭曲面 S 及其所围成的区域 Ω ⊂ D, 有:∫∫
S

F⃗ · n⃗dS =

∫∫∫
Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dV.

记散度 div F⃗ = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

. 已知对于任意闭曲面 S, 左边的曲面积分为 0, 故对于任意 Ω ⊂ D,
都有: ∫∫∫

Ω

div F⃗ dV = 0.

下面用反证法证明 div F⃗ ≡ 0. 假设存在一点 M0 ∈ D 使得 div F⃗ (M0) ̸= 0. 不妨设 div F⃗ (M0) > 0.
由于 F⃗ 连续可微, 其散度 div F⃗ 是连续函数. 根据连续函数的保号性, 存在 M0 的一个邻域 (例如

一个小球体) Ωϵ ⊂ D, 使得对于任意 M ∈ Ωϵ, 都有 div F⃗ (M) > 0. 根据重积分的单调性:∫∫∫
Ωϵ

div F⃗ dV > 0.

这与已知条件 (任意区域上的体积分为 0) 相矛盾. 同理, 若假设 div F⃗ (M0) < 0, 也会得出矛盾. 因

此, 在 D 内恒有:
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
≡ 0.
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练习 4. 试着举一例子说明: 第二类曲线积分中, 中值定理并不成立.

解答 4. 考虑闭曲线积分

I =

∮
L

−y dx+ x dy,

其中 L 为单位圆周 x2 + y2 = 1, 取逆时针方向.
直接计算该积分: 取参数方程 x = cos θ, y = sin θ, θ ∈ [0, 2π].

I =

∫ 2π

0

[− sin θ · (− sin θ) + cos θ · cos θ] dθ =

∫ 2π

0

(sin2 θ + cos2 θ) dθ = 2π.

如果第二类曲线积分的中值定理成立, 即存在曲线上一点 M(ξ, η) ∈ L, 使得∫
L

P (x, y) dx+Q(x, y) dy = P (ξ, η)

∫
L

dx+Q(ξ, η)

∫
L

dy.

对于闭曲线 L, 坐标的增量为零, 即:∫
L

dx =

∮
L

dx = 0,

∫
L

dy =

∮
L

dy = 0.

根据上述中值定理公式, 积分值应为:

I = (−η) · 0 + (ξ) · 0 = 0.

这与直接计算得到的 I = 2π ̸= 0 矛盾. 因此, 第二类曲线积分的中值定理一般不成立.

练习 5. 证明: 若 S 为封闭的光滑曲面, l⃗ 为任一固定的向量, 试证明:∫∫
S

cos(n⃗, l⃗) dS = 0,

其中 n⃗ 是 S 的外法线单位向量.

解答 5. 设 u⃗ = l⃗

|⃗l|
为向量 l⃗ 方向上的单位向量. 则

cos(n⃗, l⃗) = n⃗ · l⃗
|⃗l|

.

不妨设 l⃗ = (a, b, c) 为常向量. 则∫∫
S

cos(n⃗, l⃗) dS =
1

|⃗l|

∫∫
S

(a cosα+ b cosβ + c cos γ) dS,

其中 n⃗ = (cosα, cosβ, cos γ) 为外法线方向余弦. 将曲面积分转换为第二类曲面积分:∫∫
S

(a cosα+ b cosβ + c cos γ) dS =

∫∫
S

a dy dz + b dz dx+ c dx dy.
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设 S 所围成的空间区域为 Ω. 根据高斯公式:∫∫
S

a dy dz + b dz dx+ c dx dy =

∫∫∫
Ω

(
∂a

∂x
+

∂b

∂y
+

∂c

∂z

)
dV.

由于 a, b, c 均为常数, 偏导数均为 0, 故∫∫∫
Ω

(0 + 0 + 0) dV = 0.

因此原积分等于 0.

练习 6.

(1) 证明平面上的 Green 第一公式:∫∫
D

(v∆u+∇v · ∇u) dx dy =

∮
L

v
∂u

∂n
ds.

其中 D 是平面上的有界闭区域, L 是区域 D 的边界光滑曲线, ∂
∂n

是曲线 L 的外法线方向的方向导

数.

(2) 证明平面上的第二 Green 公式:∫∫
D

v∆u− u∆v dx dy =

∮
L

(
v
∂u

∂n
− u

∂v

∂n

)
ds.

(3) 若函数 u(x, y) 是区域 D 上的调和函数, 则

(3.a) 设 (x, y) 是区域 D 上某点, (ξ, η) 是 L 上某动点, 记 r =
√
(ξ − x)2 + (η − y)2 是两者间的距

离, 则

u(x, y) =
1

2π

∮
L

(
u
∂

∂n
ln r − ln r

∂u

∂n

)
ds.

(3.b) ∀(x, y) ∈ D, 以 (x, y) 为中心在 D 内的圆周 Cr (半径为 r), 则

u(x, y) =
1

2πr

∮
Cr

u(ξ, η) ds.

(4) u 是区域 D 上的调和函数, 那么 u 在区域 D 上的最大值和最小值均出现在边界 L 上.

解答 6. (1) 取 P = −v ∂u
∂y

, Q = v ∂u
∂x

. 根据格林公式:∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
L

P dx+Q dy.

计算左边二重积分的被积函数, 利用乘积求导法则

∂Q

∂x
=

∂

∂x

(
v
∂u

∂x

)
=

∂v

∂x

∂u

∂x
+ v

∂2u

∂x2
= vxux + vuxx.
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∂P

∂y
=

∂

∂y

(
−v

∂u

∂y

)
= −

(
∂v

∂y

∂u

∂y
+ v

∂2u

∂y2

)
= −vyuy − vuyy.

相减得到:

∂Q

∂x
− ∂P

∂y
= (vxux + vuxx)− (−vyuy − vuyy) = v(uxx + uyy) + (vxux + vyuy).

引入记号 ∆u = uxx + uyy 和 ∇v · ∇u = vxux + vyuy, 左边即为:∫∫
D

(v∆u+∇v · ∇u) dx dy.

再计算右边曲线积分, 代入 P,Q:∮
L

−vuy dx+ vux dy =

∮
L

v
(
ux dy − uy dx

)
.

利用方向导数与法向量的关系. 设 n⃗ 为曲线 L 的单位外法向量. 由几何关系知, 若 s 为弧长参

数, 则外法向量 n⃗ = (dy
ds ,−

dx
ds ). 于是外法线方向导数 ∂u

∂n
= ∇u · n⃗ = ux

dy
ds − uy

dx
ds . 两边同乘 ds,

得 ∂u
∂n

ds = ux dy − uy dx. 代入积分式即得:∮
L

v
∂u

∂n
ds.

综上所述, 等式成立: ∫∫
D

(v∆u+∇v · ∇u) dx dy =

∮
L

v
∂u

∂n
ds.

(2) 由第一 Green 公式: ∫∫
D

(v∆u+∇v · ∇u) dx dy =

∮
L

v
∂u

∂n
ds.

在上述公式中交换 u 和 v 的地位, 可得:∫∫
D

(u∆v +∇u · ∇v) dx dy =

∮
L

u
∂v

∂n
ds.

将第一个等式减去第二个等式. 左边为:∫∫
D

[(v∆u+∇v · ∇u)− (u∆v +∇u · ∇v)] dx dy =

∫∫
D

(v∆u− u∆v) dx dy.

右边为: ∮
L

v
∂u

∂n
ds−

∮
L

u
∂v

∂n
ds =

∮
L

(
v
∂u

∂n
− u

∂v

∂n

)
ds.

从而得证: ∫∫
D

(v∆u− u∆v) dx dy =

∮
L

(
v
∂u

∂n
− u

∂v

∂n

)
ds.

(3) 已知 u(x, y) 是 D 上调和函数.
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(3.a) 取 v(ξ, η) = ln r = ln
√
(ξ − x)2 + (η − y)2. 由于 u 是调和函数, ∆u = 0. 对于 (ξ, η) ̸=

(x, y), 我们验证 ∆v = 0. 事实上,

∂v

∂ξ
=

∂

∂ξ

(
1

2
ln((ξ − x)2 + (η − y)2)

)
=

ξ − x

(ξ − x)2 + (η − y)2
,

∂2v

∂ξ2
=

1 · ((ξ − x)2 + (η − y)2)− (ξ − x) · 2(ξ − x)

((ξ − x)2 + (η − y)2)2
=

(η − y)2 − (ξ − x)2

((ξ − x)2 + (η − y)2)2
.

同理可得:
∂2v

∂η2
=

(ξ − x)2 − (η − y)2

((ξ − x)2 + (η − y)2)2
.

相加即得:
∆v =

∂2v

∂ξ2
+

∂2v

∂η2
= 0.

点 (x, y) 是 v 的奇点. 以 (x, y) 为圆心, ϵ 为半径作小圆 Dϵ ⊂ D, 其边界记为 Cϵ. 在区域

D \Dϵ 上应用第二 Green 公式:∫∫
D\Dϵ

(v∆u− u∆v) dξ dη =

∮
L∪C−

ϵ

(
v
∂u

∂n
− u

∂v

∂n

)
ds = 0.

这里 L 取逆时针方向, C−
ϵ 取顺时针方向 (使得区域在左侧). 移项得:∮

L

(
v
∂u

∂n
− u

∂v

∂n

)
ds =

∮
Cϵ

(
v
∂u

∂n
− u

∂v

∂n

)
ds,

其中右侧积分路径 Cϵ 取逆时针方向, n⃗ 为 Cϵ 的外法线 (即背离 (x, y) 的方向). 在 Cϵ 上,
r = ϵ, v = ln ϵ, ∂v

∂n
= ∂ ln r

∂r
= 1

ϵ
. 于是右边积分为:∮

Cϵ

(
ln ϵ

∂u

∂n
− u

1

ϵ

)
ds = ln ϵ

∮
Cϵ

∂u

∂n
ds− 1

ϵ

∮
Cϵ

u ds.

第一项中, 根据 Green 第一公式 (取 v = 1), 我们有∮
Cϵ

∂u

∂n
ds =

∫∫
Dϵ

∆u dξ dη.

由于 u 是调和函数, 在 Dϵ 内 ∆u = 0, 故上述积分为 0. 第二项中, 利用积分中值定理, 存

在 M∗ ∈ Cϵ, 使得
∮
Cϵ

u ds = u(M∗) · 2πϵ. 当 ϵ → 0 时, u(M∗) → u(x, y). 故

lim
ϵ→0

RHS = −1

ϵ
· 2πϵu(x, y) = −2πu(x, y).

因此 ∮
L

(
v
∂u

∂n
− u

∂v

∂n

)
ds = −2πu(x, y).

整理即得:
u(x, y) =

1

2π

∮
L

(
u
∂ ln r

∂n
− ln r

∂u

∂n

)
ds.
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(3.b) 应用上述公式于圆盘 D = Br(x, y), 边界 L = Cr. 此时在边界上 r 为常数, ln r 也是常数.
对于以 (x, y) 为圆心的圆周 Cr, 其外法线方向 n⃗ 即为从圆心指向圆周的径向方向. 此时,
距离 r 沿外法线方向的变化率 ∂r

∂n
= 1. 因此, ln r 的外法线方向导数为:

∂ ln r

∂n
=

∂ ln r

∂r

∂r

∂n
=

1

r
· 1 =

1

r
.

因此

u(x, y) =
1

2π

∮
Cr

(
u · 1

r
− ln r · ∂u

∂n

)
ds = 1

2πr

∮
Cr

u ds− ln r

2π

∮
Cr

∂u

∂n
ds.

由于 u 是调和函数, 即 ∆u = 0. 根据 Green 第一公式 (取 v = 1)∮
Cr

∂u

∂n
ds =

∫∫
Br

∆u dx dy = 0,

其中 Br 是圆周 Cr 围成的圆盘. 故得平均值公式:

u(x, y) =
1

2πr

∮
Cr

u(ξ, η) ds.

(4) 我们证明: 若 u 在 D 内不恒为常数, 则其最大值只能在边界 ∂D 上取得.

设 M = max(x,y)∈D̄ u(x, y). 假设 u 在 D 内部某点 P0(x0, y0) 取得最大值, 即 u(P0) = M .

由于 P0 是内点, 存在 R > 0 使得圆盘 BR(P0) ⊂ D. 对于任意 0 < r < R, 根据平均值公式

(3.b):
u(P0) =

1

2πr

∮
Cr(P0)

u ds.

即

M =
1

2π

∫ 2π

0

u(x0 + r cos θ, y0 + r sin θ) dθ.

改写为
1

2π

∫ 2π

0

[M − u(x0 + r cos θ, y0 + r sin θ)] dθ = 0.

由于 M 是最大值, 被积函数 M − u ≥ 0. 又因为 u 连续, 若被积函数在某处严格大于 0, 则积分

必大于 0, 导致矛盾. 因此, 在圆周 Cr(P0) 上恒有 u = M . 由于 r 是 (0, R) 内任意的, 故在整个

圆盘 BR(P0) 内恒有 u(P ) = M .

这说明: 如果 u 在内部某点取到最大值, 那么该点附近的一个小邻域内 u 恒等于最大值.

这意味着: 只要 u 在区域内部某一点取到最大值, 那么该点附近的一个圆盘内 u 处处等于最大

值. 现在, 设 Q 是 D 内任意一点. 由于 D 是连通区域, 我们可以用一条完全位于 D 内的曲线

连接 P0 和 Q. 我们可以沿着这条曲线覆盖一串有限个互相重叠的小圆盘. 对于第一个圆盘 (以
P0 为中心), 我们已知其中 u ≡ M . 第二个圆盘的中心位于第一个圆盘内, 因此其中心处的函数

值为 M . 根据刚才的结论, 第二个圆盘内 u 也恒等于 M . 依此类推, 我们可以将 u = M 的性质
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沿着曲线一步步“传递”过去, 直到覆盖点 Q, 从而证明 u(Q) = M . 因此, u 在 D 内恒等于 M .
由连续性, u 在 D̄ 上恒等于 M .

综上所述, 若 u 不恒为常数, 则最大值 M 不能在 D 内部取得, 只能在边界 ∂D 上取得.

同理可证最小值原理 (考虑 −u 或重复上述过程).
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