
Exercise Sheet – Mathematical Analysis III

Taiyang Xu∗

11/12/2025, Week 14

练习 1. 考虑如下的一个积分

Ip,q,r,s =

∫
D

xpyqzr(1− x− y − z)s dx dy dz,

其中 p, q, r, s 均为正整数, D = {(x, y, z) | x, y, z ≥ 0, x+ y + z ≤ 1}.
若我们记 D(t) = {(x, y, z) | x, y, z ≥ 0, x+ y + z ≤ t}, 以及

Ip,q,r,s(t) =

∫
D(t)

xpyqzr(t− x− y − z)s dx dy dz.

我们完成下面的题目:

(1) 证明: ∫ 1

0

Ip,q,r,s(t) dt = Ip,q,r,s
p+ q + r + s+ 4

.

(2) 证明:
Ip,q,r,s+1 =

s+ 1

p+ q + r + s+ 4
Ip,q,r,s.

(3) 计算 Ip,q,r,s 的显式表达式

Ip,q,r,s =
p!q!r!s!

(p+ q + r + s+ 3)!
.

(利用
∫ 1

0
xp(1− x)q+1 dx = p!(q+1)!

(p+q+2)!
)

解答 1. (1) 注意到 Ip,q,r,s(1) = Ip,q,r,s. 我们对 Ip,q,r,s(t) 做变量代换 x = tu, y = tv, z = tw. 此时
雅可比行列式为 t3. 区域 D(t) 变为 D(1) = D. 于是

Ip,q,r,s(t) =

∫
D

(tu)p(tv)q(tw)r(t− tu− tv − tw)s · t3 du dv dw

= tp+q+r+s+3

∫
D

upvqwr(1− u− v − w)s du dv dw

= tp+q+r+s+3Ip,q,r,s.
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因此,∫ 1

0

Ip,q,r,s(t) dt =
∫ 1

0

tp+q+r+s+3Ip,q,r,s dt = Ip,q,r,s

[
tp+q+r+s+4

p+ q + r + s+ 4

]1
0

=
Ip,q,r,s

p+ q + r + s+ 4
.

(2) 另一方面, 我们直接计算
∫ 1

0
Ip,q,r,s(t) dt.∫ 1

0

Ip,q,r,s(t) dt =
∫ 1

0

(∫
D(t)

xpyqzr(t− x− y − z)s dx dy dz
)

dt

=

∫
D(1)

xpyqzr

(∫ 1

x+y+z

(t− x− y − z)s dt
)

dx dy dz

=

∫
D

xpyqzr

[
(t− x− y − z)s+1

s+ 1

]t=1

t=x+y+z

dx dy dz

=

∫
D

xpyqzr
(1− x− y − z)s+1

s+ 1
dx dy dz

=
1

s+ 1
Ip,q,r,s+1.

结合 (1) 中的结论, 我们有

1

s+ 1
Ip,q,r,s+1 =

Ip,q,r,s
p+ q + r + s+ 4

=⇒ Ip,q,r,s+1 =
s+ 1

p+ q + r + s+ 4
Ip,q,r,s.

(3) 利用递推公式, 我们有

Ip,q,r,s =
s

p+ q + r + s+ 3
Ip,q,r,s−1

=
s(s− 1)

(p+ q + r + s+ 3)(p+ q + r + s+ 2)
Ip,q,r,s−2

= · · ·

=
s!

(p+ q + r + s+ 3) · · · (p+ q + r + 4)
Ip,q,r,0.

现在我们需要计算 Ip,q,r,0 =
∫
D
xpyqzr dx dy dz. 利用类似的思路 (或者直接利用 Dirichlet 积

分公式), 我们可以逐步降维. 或者利用题目提示的积分公式, 我们可以归纳地看. 实际上, 我们
可以把 Ip,q,r,s 看作关于 s 的递推. 如果我们将 s 视为 0, 我们可以利用类似的降维方法计算
Ip,q,r,0. 更简单的方法是直接利用广义 Dirichlet 积分公式 (Liouville 形式):∫

xi≥0,
∑

xi≤1

xp1−1
1 · · ·xpn−1

n (1−
∑

xi)
s−1 dx =

Γ(p1) · · ·Γ(pn)Γ(s)
Γ(p1 + · · ·+ pn + s)

.

这里对应的是 p+ 1, q + 1, r + 1, s+ 1. 所以

Ip,q,r,s =
Γ(p+ 1)Γ(q + 1)Γ(r + 1)Γ(s+ 1)

Γ(p+ 1 + q + 1 + r + 1 + s+ 1)
=

p!q!r!s!

(p+ q + r + s+ 3)!
.
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如果仅利用题目提示
∫ 1

0
xp(1 − x)q+1 dx = p!(q+1)!

(p+q+2)!
(Beta 函数), 我们可以这样做: 我们已经建

立了关于 s 的递推. 实际上关于 p, q, r 也是类似的. 例如, 考虑 Ip,q,r,s 对 x 积分: 令 y, z 固定,
x 从 0 到 1− y − z. 令 x = (1− y − z)u, 则 dx = (1− y − z) du.∫ 1−y−z

0

xp(1− y − z − x)s dx =

∫ 1

0

(1− y − z)pup(1− y − z)s(1− u)s(1− y − z) du

= (1− y − z)p+s+1

∫ 1

0

up(1− u)s du

= (1− y − z)p+s+1 p!s!

(p+ s+ 1)!
.

于是

Ip,q,r,s =
p!s!

(p+ s+ 1)!

∫
Dy,z

yqzr(1− y − z)p+s+1 dy dz,

其中 Dy,z = {y, z ≥ 0, y + z ≤ 1}. 这正好是形式为 Iq,r,p+s+1 的二维积分 (这里 z 对应原来的

z, y 对应 y, 指数为 q, r, 剩余项指数为 p+ s+ 1). 重复此过程: 令 y = (1− z)v,∫ 1−z

0

yq(1− z − y)p+s+1 dy = (1− z)q+p+s+1+1

∫ 1

0

vq(1− v)p+s+1 dv

= (1− z)p+q+s+2 q!(p+ s+ 1)!

(p+ q + s+ 2)!
.

最后对 z 积分: ∫ 1

0

zr(1− z)p+q+s+2 dz =
r!(p+ q + s+ 2)!

(p+ q + r + s+ 3)!
.

将所有系数相乘:

Ip,q,r,s =
p!s!

(p+ s+ 1)!
· q!(p+ s+ 1)!

(p+ q + s+ 2)!
· r!(p+ q + s+ 2)!

(p+ q + r + s+ 3)!
=

p!q!r!s!

(p+ q + r + s+ 3)!
.

练习 2. 假设函数 u(x, y) 在 R2 上有连续的二阶偏导数, 且 ∆u = 0. 而 u(x, y) 的一阶偏导数对任意固

定的 y ∈ R 是关于 x 的以 2π 为周期的函数. 证明:

f(y) =

∫ 2π

0

u2
x(x, y)− u2

y(x, y) dx ≡ Const., ∀y ∈ R.

解答 2. 我们计算 f(y) 关于 y 的导数:

f ′(y) =
d

dy

∫ 2π

0

(u2
x − u2

y) dx =

∫ 2π

0

∂

∂y
(u2

x − u2
y) dx.

在积分号下求导, 我们有
∂

∂y
(u2

x − u2
y) = 2uxuxy − 2uyuyy.
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由于 ∆u = 0, 则 uyy = −uxx. 代入上式:

2uxuxy − 2uy(−uxx) = 2uxuxy + 2uyuxx.

注意到
∂

∂x
(2uxuy) = 2uxxuy + 2uxuyx.

由于 u 是 C2 的, uxy = uyx. 因此被积函数恰好是一个全微分:

∂

∂y
(u2

x − u2
y) =

∂

∂x
(2uxuy).

于是

f ′(y) =

∫ 2π

0

∂

∂x
(2uxuy) dx =

[
2ux(x, y)uy(x, y)

]x=2π

x=0
.

题目已知 u 的一阶偏导数关于 x 是以 2π 为周期的. 这意味着 ux(2π, y) = ux(0, y) 且 uy(2π, y) =

uy(0, y). 因此,
f ′(y) = 2ux(2π, y)uy(2π, y)− 2ux(0, y)uy(0, y) = 0.

因为 f ′(y) ≡ 0, 所以 f(y) 是常数.

练习 3. 设 f(x) 在 [0,+∞) 上连续,
∫ +∞
A

f(z)
z

dz (A > 0) 存在, 计算如下积分:

Ia,b =

∫ +∞

0

f(ax)− f(bx)

x
dx, a, b > 0.

解答 3. 我们考虑截断积分

I(ϵ,M) =

∫ M

ϵ

f(ax)− f(bx)

x
dx,

其中 0 < ϵ < M < +∞. 我们可以将其拆分为两部分:

I(ϵ,M) =

∫ M

ϵ

f(ax)

x
dx−

∫ M

ϵ

f(bx)

x
dx.

对第一个积分做代换 u = ax, dx = 1
a

du, 积分限变为 aϵ 到 aM . 对第二个积分做代换 v = bx,
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dx = 1
b

dv, 积分限变为 bϵ 到 bM . 于是

I(ϵ,M) =

∫ aM

aϵ

f(u)

u/a

1

a
du−

∫ bM

bϵ

f(v)

v/b

1

b
dv

=

∫ aM

aϵ

f(u)

u
du−

∫ bM

bϵ

f(v)

v
dv

=

(∫ bϵ

aϵ

f(u)

u
du+

∫ aM

bϵ

f(u)

u
du
)

−

(∫ aM

bϵ

f(v)

v
dv +

∫ bM

aM

f(v)

v
dv
)

=

∫ bϵ

aϵ

f(u)

u
du−

∫ bM

aM

f(u)

u
du.

现在我们分别考虑 ϵ → 0+ 和 M → +∞.
对于第一部分

∫ bϵ

aϵ
f(u)
u

du: 由于 f(x) 在 x = 0 处连续, 我们可以利用积分中值定理. 存在
ξ ∈ (min(aϵ, bϵ),max(aϵ, bϵ)) 使得∫ bϵ

aϵ

f(u)

u
du = f(ξ)

∫ bϵ

aϵ

1

u
du = f(ξ) ln

(
bϵ

aϵ

)
= f(ξ) ln

(
b

a

)
.

当 ϵ → 0+ 时, ξ → 0, 故 f(ξ) → f(0). 所以

lim
ϵ→0+

∫ bϵ

aϵ

f(u)

u
du = f(0) ln

(
b

a

)
.

对于第二部分
∫ bM

aM
f(u)
u

du: 题目给定条件
∫ +∞
A

f(z)
z

dz 存在. 根据柯西收敛准则, 对于任意
η > 0, 存在 K > 0, 当 M1,M2 > K 时, |

∫M2

M1

f(z)
z

dz| < η. 令 M1 = aM,M2 = bM . 当 M → +∞
时, aM, bM → +∞. 因此

lim
M→+∞

∫ bM

aM

f(u)

u
du = 0.

综上所述,
Ia,b = lim

ϵ→0+

M→+∞

I(ϵ,M) = f(0) ln
(
b

a

)
− 0 = f(0) ln

(
b

a

)
.

练习 4. 函数 f(x) 在实轴上连续且 f(x) > 0. 已知对所有的 t, 有:∫ +∞

−∞
e−|t−x|f(x) dx ≤ 1.

试证: 对任意的 a < b, 有 ∫ b

a

f(x) dx ≤ b− a+ 2

2
.

解答 4. 我们记 K(t) =
∫ +∞
−∞ e−|t−x|f(x) dx. 已知 K(t) ≤ 1. 我们需要估计

∫ b

a
f(x) dx. 考虑对
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K(t) 在区间 [a, b] 上积分: ∫ b

a

K(t) dt =
∫ b

a

(∫ +∞

−∞
e−|t−x|f(x) dx

)
dt.

由于 f(x) > 0 且被积函数非负, 我们可以利用 Fubini 定理交换积分次序:∫ b

a

K(t) dt =
∫ +∞

−∞
f(x)

(∫ b

a

e−|t−x| dt
)

dx.

因为 K(t) ≤ 1, 所以左边
∫ b

a
K(t) dt ≤

∫ b

a
1dt = b− a.

现在我们计算内层积分 g(x) =
∫ b

a
e−|t−x| dt. 我们需要分情况讨论 x 的位置:

(i) 当 x < a 时: |t− x| = t− x (因为 t ∈ [a, b]).

g(x) =

∫ b

a

e−(t−x) dt = ex
∫ b

a

e−t dt = ex(e−a − e−b) = e−(a−x) − e−(b−x).

(ii) 当 a ≤ x ≤ b 时:

g(x) =

∫ x

a

e−(x−t) dt+
∫ b

x

e−(t−x) dt = e−x

∫ x

a

et dt+ ex
∫ b

x

e−t dt

= e−x(ex − ea) + ex(e−x − e−b) = (1− e−(x−a)) + (1− e−(b−x)) = 2− e−(x−a) − e−(b−x).

(iii) 当 x > b 时: |t− x| = x− t.

g(x) =

∫ b

a

e−(x−t) dt = e−x

∫ b

a

et dt = e−x(eb − ea) = e−(x−b) − e−(x−a).

注意到对于所有 x, g(x) > 0. 我们有不等式:

b− a ≥
∫ +∞

−∞
f(x)g(x) dx.

我们要估计的是
∫ b

a
f(x) dx. 注意到在区间 [a, b] 上, g(x) = 2 − e−(x−a) − e−(b−x). 显然 g(x) < 2.

这不能直接给出下界.
让我们重新审视不等式.∫ +∞

−∞
f(x)g(x) dx =

∫ a

−∞
f(x)g(x) dx+

∫ b

a

f(x)g(x) dx+

∫ +∞

b

f(x)g(x) dx ≤ b− a.

由于 f(x) > 0 且 g(x) > 0, 我们有 ∫ b

a

f(x)g(x) dx ≤ b− a.

在 [a, b] 上, g(x) = 2− (e−(x−a) + e−(b−x)). 代入得:∫ b

a

f(x)(2− e−(x−a) − e−(b−x)) dx ≤ b− a.
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即

2

∫ b

a

f(x) dx−
∫ b

a

f(x)e−(x−a) dx−
∫ b

a

f(x)e−(b−x) dx ≤ b− a.

我们需要估计后两项. 利用题目已知条件 K(t) ≤ 1. 取 t = a, 有
∫ +∞
−∞ e−|a−x|f(x) dx ≤ 1. 特

别是
∫ b

a
e−|a−x|f(x) dx ≤ 1. 在 [a, b] 上, |a − x| = x − a, 所以

∫ b

a
e−(x−a)f(x) dx ≤ 1. 同理, 取

t = b, 有
∫ +∞
−∞ e−|b−x|f(x) dx ≤ 1. 特别是

∫ b

a
e−|b−x|f(x) dx ≤ 1. 在 [a, b] 上, |b− x| = b− x, 所以∫ b

a
e−(b−x)f(x) dx ≤ 1.
将这两个不等式代入之前的式子:

2

∫ b

a

f(x) dx− 1− 1 ≤ 2

∫ b

a

f(x) dx−
∫ b

a

f(x)e−(x−a) dx−
∫ b

a

f(x)e−(b−x) dx ≤ b− a.

所以

2

∫ b

a

f(x) dx− 2 ≤ b− a.

整理得

2

∫ b

a

f(x) dx ≤ b− a+ 2 =⇒
∫ b

a

f(x) dx ≤ b− a+ 2

2
.

练习 5. 证明

I(α) :=

∫ +∞

1

e−
1

α2 (x− 1
α)

2

dx

在 α ∈ (0, 1) 上一致收敛.

解答 5. 令 u = 1
α

. 由于 α ∈ (0, 1), 故 u ∈ (1,+∞). 积分变为 J(u) =
∫ +∞
1

e−u2(x−u)2 dx. 我们需
要证明 limA→+∞ supu∈(1,∞)

∫ +∞
A

e−u2(x−u)2 dx = 0.
对积分

∫ +∞
A

e−u2(x−u)2 dx 做变量代换 y = u(x − u), 则 x = y
u
+ u, dx = 1

u
dy. 当 x = A 时,

y = u(A− u). 于是 ∫ +∞

A

e−u2(x−u)2 dx =
1

u

∫ +∞

u(A−u)

e−y2 dy.

我们分两种情况讨论 u 的取值:

(i) 当 1 < u ≤ A
2
时: 此时 A− u ≥ A

2
, 故积分下限 u(A− u) ≥ 1 · A

2
= A

2
. 由于 u > 1, 1

u
< 1. 且

被积函数 e−y2

> 0.
1

u

∫ +∞

u(A−u)

e−y2 dy ≤
∫ +∞

A/2

e−y2 dy.

(ii) 当 u > A
2
时: 此时 1

u
< 2

A
. 我们将积分范围扩大到 (−∞,+∞):

1

u

∫ +∞

u(A−u)

e−y2 dy <
2

A

∫ +∞

−∞
e−y2 dy =

2
√
π

A
.
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综上所述, 对于任意 u ∈ (1,+∞), 我们有∫ +∞

A

e−u2(x−u)2 dx ≤ max
(∫ +∞

A/2

e−y2 dy, 2
√
π

A

)
.

当 A → +∞ 时,
∫ +∞
A/2

e−y2 dy → 0 (因为
∫ +∞
−∞ e−y2 dy 收敛), 且 2

√
π

A
→ 0. 因此, 该积分关于

u ∈ (1,+∞) (即 α ∈ (0, 1)) 一致收敛.
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