
Exercise Sheet – Mathematical Analysis III

Taiyang Xu∗

18/12/2025, Week 15

练习 1. 考虑 Γ 函数

Γ(z) =

∫ ∞

0

tz−1e−t dt, z > 0.

(注记: 如果变量 z 是复的, 则上式一般定义在 Re(z) > 0) 我们现在关注 Γ(z) 的小 z 渐近展开.

解答 1. 首先利用分部积分, 我们可以知道

Γ(z) =

∫ ∞

0

tz−1e−t dt = 1

z

∫ ∞

0

e−t

(
d
dt t

z

)
dt

=
1

z

[
e−ttz

∣∣∣∞
0

+

∫ ∞

0

e−ttz dt
]

=
1

z

∫ ∞

0

e−ttz dt. (1)

这表明了递推关系 Γ(z + 1) = zΓ(z). 对每个固定的 t, 我们注意到: 当 z → 0 时, tz ≈ 1. 事实上,
我们可以把 tz 写成指数形式 ez log t. 当 z → 0 时, 利用 Taylor 展开, 我们有

tz = ez log t = 1 + z log t+ z2

2
log2 t+ · · ·

对任意的 z > 0 和 t > 0, 这显然是一个收敛级数. 在上式两端同时乘上 e−t, 我们得到:

tze−t = e−t + ze−t log t+ z2

2
e−t log2 t+ · · ·

我们希望把这一行代入 (1) 式中, 并对每一项分别积分. 为了确保逐项积分后还是收敛的, 我们需要
利用到 Lebesgue 控制收敛定理.

[当 n→ ∞ 时, 如果 fn(t) → f(t) 对 t ∈ (a, b) 几乎处处成立 (关于 (a, b) 上的 Lebesgue 测度),
并且存在一个可积函数 g 使得对所有的 n, 都有 |fn| ≤ g 几乎处处成立, 并且

∫ b

a
g(t) dt <∞. 那么

limn→∞
∫ b

a
fn(t) dt =

∫ b

a
f(t) dt.]
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事实上, 这里所有的部分和都能被一个关于 t 的可积函数控制住,

|e−t

n∑
k=0

zk

k!
logk t| ≤ e−t

n∑
k=0

|z|k

k!
| log t|k ≤ e−t

∞∑
k=0

|z|k

k!
| log t|k

= e|z|| log t|−t

=

t
−|z|e−t, 0 < t < 1,

t|z|e−t, t ≥ 1,

这些上界在 (0,∞) 上都是绝对可积的. 因此, 我们可以逐项积分得到

Γ(z + 1) =

∫ ∞

0

e−t

(
1 + z log t+ z2

2
log2 t+ · · ·

)
dt

= 1 + z

∫ ∞

0

e−t log tdt+ z2

2

∫ ∞

0

e−t log2 t dt+ · · ·

= 1− γz +

(
γ2

2
+
π2

12

)
z2 + · · · ,

我们稍后再给出第三项的系数. 这里 γ 是 Euler 常数, 定义为

γ = −
∫ ∞

0

e−t log t dt ≈ 0.577216. (2)

因此 Γ(z) 在 z = 0 处的渐近展开为

Γ(z) =
1

z
− γ +

(
γ2

2
+
π2

12

)
z + · · · .

练习 2. 我们回顾 (2) 式中定义的 Euler 常数 γ. 证明 (2) 等价于

γ = lim
n→∞

 n∑
k=1

1

k
− logn

 .

解答 2. 先说明右端的极限确实是存在的. 构造序列

xn =
n∑

k=1

1

k
− logn.

则

xn − xn+1 = log
(
1 +

1

n

)
− 1

n+ 1
.
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利用到下面这个事实, 对任意的 t > 0, 都有

t

1 + t
< log(1 + t) < t.

取 t = 1
n

, 我们得到
1

n+ 1
< log

(
1 +

1

n

)
<

1

n
.

这说明 {xn} 是一个单调递减的序列. 对于函数 f(x) = 1/x, 在区间 [k, k+1], k ≥ 1, 上是单调递减
的, 因此

1

k
>

∫ k+1

k

1

x
dx = log(k + 1)− log k.

则
n∑

k=1

1

k
> log(n+ 1).

因此

xn =
n∑

k=1

1

k
− logn > log(n+ 1)− logn = log

(
1 +

1

n

)
> 0.

综上, {xn} 是一个有下界的单调递减序列, 故极限存在.
我们从积分定义出发. 利用关系式 e−t = limn→∞

(
1− t

n

)n (对 0 ≤ t ≤ n), 我们可以将 γ 写为

γ = −
∫ ∞

0

e−t log t dt

= − lim
n→∞

∫ n

0

(
1− t

n

)n

log t dt.

这里我们使用了 Lebesgue 控制收敛定理. 注意到函数序列 fn(t) = (1− t/n)n · 1[0,n](t) 逐点收敛到

e−t. 此外, 利用不等式 1 − x ≤ e−x, 我们有 |fn(t)| ≤ e−t. 由于控制函数 e−t| log t| 在 (0,∞) 上绝

对可积, 故极限符号可以移入积分号内.
接下来, 令 t = nx, 则 dt = n dx, 积分变为∫ n

0

(
1− t

n

)n

log t dt =
∫ 1

0

(1− x)n(logn+ logx)n dx

= n logn
∫ 1

0

(1− x)n dx+ n

∫ 1

0

(1− x)n logx dx.

第一部分积分很容易计算:

∫ 1

0

(1− x)n dx =

[
−(1− x)n+1

n+ 1

]1
0

=
1

n+ 1
.

对于第二部分, 我们利用分部积分: 令 u = logx, dv = (1− x)n dx. 我们选取 v = 1−(1−x)n+1

n+1
(使得
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v(0) = 0). 于是

∫ 1

0

(1− x)n logx dx =

[
1− (1− x)n+1

n+ 1
logx

]1
0

−
∫ 1

0

1− (1− x)n+1

n+ 1

1

x
dx

= 0− 1

n+ 1

∫ 1

0

1− (1− x)n+1

x
dx.

(注: 边界项在 x = 1 处显然为 0; 在 x → 0 时, 分子趋于 0 的速度为 O(x), 乘以 logx 后极限仍为
0). 接着令 y = 1− x, 我们有∫ 1

0

1− (1− x)n+1

x
dx =

∫ 0

1

1− yn+1

1− y
(− dy) =

∫ 1

0

1− yn+1

1− y
dy.

利用几何级数求和公式 1−yn+1

1−y
=
∑n

k=0 y
k, 我们得到

∫ 1

0

1− yn+1

1− y
dy =

n∑
k=0

∫ 1

0

yk dy =
n∑

k=0

1

k + 1
=

n+1∑
k=1

1

k
.

将这些结果代回原式:

∫ n

0

(
1− t

n

)n

log t dt = n

n+ 1
logn+ n

− 1

n+ 1

n+1∑
k=1

1

k


=

n

n+ 1

logn−
n+1∑
k=1

1

k

 .

最后取 n→ ∞, 注意到 n
n+1

→ 1 且 1
n+1

→ 0, 我们有

γ = − lim
n→∞

logn−
n∑

k=1

1

k

 = lim
n→∞

 n∑
k=1

1

k
− logn

 .

练习 3. 得到 Γ 函数的 Weierstrass 乘积展开

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n.

解答 3. 定义
Γn(z) =

∫ n

0

tz−1

(
1− t

n

)n

dt.

考虑如下的递推关系, 令

In,k(z) =

∫ n

0

tz−1

(
1− t

n

)k

dt.
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利用分部积分, 我们有

In,k(z) =

[
tz

z

(
1− t

n

)k
]n
0

+
k

nz

∫ n

0

tz
(
1− t

n

)k−1

dt = k

nz
In,k−1(z + 1).

重复利用这个递推公式, 从 k = n 开始, 我们得到

Γn(z) = In,n(z) =
n!nz

z(z + 1) · · · (z + n)
.

取倒数, 并将 nz 和 n! 用指数表示, 注意到:

n−z = e−z log n, logn =
n∑

k=1

1

k
− γn,

其中 γn =
∑n

k=1
1
k
− logn 是部分和定义的 Euler 常数近似, 于是

1

Γn(z)
= zeγnz

n∏
k=1

(
1 +

z

k

)
e−z/k.

为说明无穷乘积
∞∏
k=1

(
1 +

z

k

)
e−z/k

的收敛性, 取对数,

S(z) :=
∞∑
k=1

(
log
(
1 +

z

k

)
− z

k

)
.

只需证明上式级数对任一固定 z 收敛. 由 Taylor 展开或基本不等式, 对于任意实数 w 满足 |w| ≤
1/2 存在常数 C 使得

| log(1 + w)− w| ≤ Cw2.

取 w = z/k, 当 k > 2|z| 时有 |w| ≤ 1/2, 于是尾项有∑
k>2|z|

∣∣∣ log
(
1 +

z

k

)
− z

k

∣∣∣ ≤ Cz2
∑

k>2|z|

1

k2
<∞.

前面有限多项显然有限, 因此整个级数绝对收敛, 从而对数级数收敛, 乘积收敛 (在任意有界区间上
一致收敛).
取 n→ ∞, 并利用 limn→∞ γn = γ, 我们得到

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n.
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练习 4. 已知道函数 ψ(z) = d
dz logΓ(z), 其中 Γ(z) 是 Gamma 函数. 证明:

ψ′(z) =
∞∑

n=0

1

(z + n)2
.

解答 4. 直接利用 logΓ(z) 的 Weierstrass 乘积展开:

logΓ(z) = −γz − log z +
∞∑

n=1

(
z

n
− log

(
1 +

z

n

))
.

对 z 求导得

ψ(z) = −γ − 1

z
+

∞∑
n=1

(
1

n
− 1

n+ z

)
.

再对 z 求导一次:

ψ′(z) =
1

z2
+

∞∑
n=1

1

(n+ z)2
=

∞∑
n=0

1

(z + n)2
.

练习 5. 证明: ∫ ∞

0

e−t log2 t dt = γ2 +
π2

6
.

这给出 Γ(z) 中小 z 展开的第三项系数.

解答 5. 令
I =

∫ ∞

0

e−t log2 t dt.

我们可以利用 Γ′(z) 的性质. 由
Γ(z) =

∫ ∞

0

tz−1e−t dt,

对 z 求导得

Γ′(z) =

∫ ∞

0

tz−1e−t log t dt.

再对 z 求导一次,
Γ′′(z) =

∫ ∞

0

tz−1e−t(log t)2 dt.

取 z = 1, 有
Γ′′(1) =

∫ ∞

0

e−t(log t)2 dt = I.

另一方面, 记 ψ(z) = Γ′(z)
Γ(z)

, 则 ψ′(z) = Γ′′(z)Γ(z)−(Γ′(z))2

Γ2(z)
. 当 z = 1 时, Γ(1) = 1. Γ′(1) = −γ,

Γ′′(1) = I, 所以
ψ′(1) = I − γ2.

而 ψ′(1) = π2

6
. 因此 I = γ2 + π2

6
.
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