Exercise Sheet — Mathematical Analysis III

Taiyang Xu*

25,/12/2025, Week 16

EX 1. #% X BEEMEZE, MEMEE v,y € X B85 (v,y) G2, HiliE LR 44
(1) (z,z) >0, H24HAVY = = 0 BEEES,

(2) (z.y) = (y, 2);

(3) AMEFERL o, B A (axy + Bra,y) = a1, y) + (w2, y);

WFR () A X BRI, FRECE AR E L2 oy AR =S 8]

B X BNBEH, 4
[zl = V(z,2), VeelX.

AT LA IE (o] 2 VB0 =T (IESENE, FRRtE, =M, ORI - | 8 X EBARES
ROSEEE. WL BN B A2 — FRRR ARG ZS 0] 7 X 4% B i N BUS SR o, WFR X A%
RIa%F=a).

%3 1. 3% X RAMEE, IR AAER: MEE vy e X A
[z y)| < ]l - lyll,

Het ||z]| = v/ (2, 2).

BE L Ay =0, WWAEXBARL. Blik y # 0, WEEEH A A

0<(z—Ay,x—Ny) = (x,z) — My, z) — Mz, y) + [A*(y,9).

|z, y)|?
O<@o =0 o
&l
(2, y)|* < (z,2) - (y,9).
A it

[z, u)| < 1]l - [lyll-
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%3 2. WBURK TR TCIELL R AL

BE 2. 3% {zn} M {ya} S HIRARZER X ST = 1y W51, M

(@, Un) — (2, Y)| = (T, Yn — y) + (20 — 2, 7)]
<ol - |lyn — yll + llzn — || - |lyll-

BT {zn} WS, WL {llzal} AF, BAEEFEE M > 0 15 ||z, < M IHEE n 52 BT {ya}
BTy, B llyn —yll = 0 (n— o0). AL, [|zn — 2| = 0 (n — o0). Flit

K Zns yn) — (@, )| S M -y —yll + |2 — || - [l =0 (n — 00).

lim (@, yn) = (x,y).

n— oo

5] 3. TR RS L2(a,b), &L AR
b PR—
(f.9) = / f@)g@ dr, Vf.g € I*(a,b),
AR S AN
b 1/2
I£1e = ( [ 1r@ar) ", vr e a),

FLE, L (a,b) & — AR AR .
BE 3. XMEBATIEN B &E, (R NIETERZ WS, RIARIEN EREFRHL.

EX 2. % X BN, 2, vy £ X PRICK, H (z,y) =0, MK 2 5 y EXR, ioffz Ly E
X W78 A pENm RS 7E B e EIES, WK A 5 B IEX.

EX 3 (IERFR). 7 M 2AMEH X B— A8 0 T8, MR M A ERPIAAH R §HSIE
58 WFR M A X D IERR. Pe—DHl, 47 M PR SR 1 WK M o X EBE
EXAR.

1&“% 1- E L2(_7T77T) EP) %XW@]\%

)=+ [ f@iidn, vi.ge L(-nm).



IS o) )
{ﬁ, cosx, sinx, cos2x, sin2x, }
& L (—m,m) I— P HEIESC R,

lT:x 4. X XEM{Bszlé IEﬂa Ty,To,- " ZEé X ':PE/‘JQ@Jﬁ%, Qp,Qg, - /‘\Eé;.ﬁ”%ﬁa ﬁzﬂéﬁgﬁﬁ
Zai-’ﬂm
=1

PR Sy = D00y iz SERGUEI RN, A MIF] { S} ST © € X, WIFKZPRUE X HhiRsy, 5F
PR @ NZGRRIAI, 1e4E N
xTr = Z ;5.
i=1

%3 4.4 M N X PERVEIES R, e, eq, -+ 52 M ARSI G, H o =307, ae;, T

o0
(x,ej)e
Jj=1

BE 4. BT M OSMWEIESR, BT i # 5 A (e, e;) =0, H [lesl] = 1. HIHER n € NT

ﬁ oo oo
<x,ej> = <2aiei,ej> = Zai<ei,ej> = .
i=1 i=1
il
(z,e;)e Zajej =z
j=1 -

EX 5. % M ZNZE X WINEERR, » € X, FrREUE
{(z,e)|le € M}
N or RTHIEERRR M NEEHREE, (v,e) Bl o X T e NEREMHRE
%3] 5. % M RNRZR X MIVEIERR, £ M PRARA A e, ... en, TED]
1) MEEzeX FH

n

$—Z<l‘ ei)e;

i=1

= || —Zlffe ) >0.

(2) MEEN zeX A

> , Vai,as,...,a, € C.

T — Z(m, €;)e;

=1

n
Xr — E €,
=1




BR& 5. (1) BT M MHTEERR, FIWHTE ¢ # 5 B (ene) =0, H |lef| = 1. FEIIHER
ne Nt g

2

=(z,2) — ) _ (@ ;) {z ;) — Z@a ez, e + ), ei)l®

n
=[lz|® =D Iz, en)?
i=1

A TRRAR, Rk

n

.’E*Z<l’ e;)e

=1

= |ll* - ZI z,e)[* > 0.

(2) FHEHh, XMER n e Nt H

2 2

n n
T — Zaiei fo(a:,eQei
i=1 i=1
n n
:<xZaiei,xZajej>< Z Z,€;)€i, & — (m,ej>ej>
i=1 j=1 i=1 j=1
n n
=||||* - Z@(%%) - Zai(x,eﬁ + Z ol = llzl® + D 16, )]
j=1
_Z|a’|2 Zalxe Zazxe —|—Z|me

—Z|al (z,e)|* > 0.

3

3

Sl

>

x—Za €; x—Z(m,el}ei .
=1

MIEHFBEATAT LV H, HEME o = (z,e;) RETHAL. FHFHEM e1,.. . en MEMARE
I @, W AR U B R4




%3 6. LW R Bessel A4 i M O2NREH X IWIVEIER R, MXER v € X A

o0
> Nzl < el

=1

fRE 6. i E—NEIWNELTIH, FMER n e NT

2
n

T — Z(x,ez)ei

=1

=llz> = > [z, e * > 0.
=1

it )
> K, ea)[? < [l
=il

T b ACRHFERE n A, PR BT 1

o

> Kzl < el
i=1

B3 7. (o) WAR/RIEES] X PTG ER R, T4
(1) 208 3072, cuey WO BEARAT 2 D202, foul® < oo
(2) % T = Zzoil @€, D_\[U Q; = <l‘,€7;>, Vi € N+7 —S&

x = Z(x,ei>ei.

i=1

ﬁgfﬁl‘: 7. (1) iﬁ Sn = Z?:l Q€5 Op = Z?:l |Oéi|2, EE%C {el} %%ﬂ?ﬁiig\a JJ:KX#{E%IE%E&&

n>mHa
n 2 n
|Sn — Sm”2 = H Z Qi€i)| = Z |ai|2 = 0n = Om-

1=m-+1 1=m-+1

BrlA {Sn} 72 X o Cauchy SIRYFEEEMZ {0} 72 R o1 Cauchy (%) 51, 1 X 1 R l95E%
PERTLARIIE {S,} WS FE B ME {on} BT A 2552, Jauf® < oo.

(2) LS Z AT AL

(3) Hi Bessel AEE:FIH, MMER 2 € X A

>l el? < llall® < oo
i=1



Hi (1) 1 (2) ATAL, B 322 (, es)es WIS
WAVRA SRR AT RIHEIS: 37 {en} HA/RIORFER X PRI EOTEIER R, MAHER « € X,

nh_}n;(x, en) =0.

(RS R ELR )

EX 6. 1 M ZaA/RMAkasa X MATEIER R, R
spanM = X,
WFR M N X (EEIEERE.

%3] 8. ¥ M BAR/RIER X 5AREERR, B4 M R aBars M- = {0).

fRE 8. WATFL EAFEIEN: & M 24 /KMAfaE X RdEs+48, I M 26 spanM
£ X hHRENEEERE M = {0}.

&z e M+, # spanM £ X HFI%, W x € spanM, FIHIFAE {z,} € spanM, {§15§ z, — z
(n — o). HNFRRGZESLYE, (2, 2) =0, B 2 = 0. LA M+ = {0}.

R2Z, # M+ = {0}, % = L spanM, M| = L M, Hit, x € M+. d M+ = {0} /%1 z = 0.
Rt (spanM)+ = {0}. {H (spanM)+ = (spanM)*, F| % EFHATH spanM = X. HL |, 4
Y :=span M. BERA Y+ = {0}. XMER « € X, %50 @] 15— fiF

rT=y+ 2, yeY, zeYt

HT zeYLt={0}, It z=0 INifi a =y €Y. K 2 /FH, #k Y = X, Hj span M = X.
TR XENRY EHER/RMARS R EH, BRIEHFEREZNS ). WENEE
BRUE I & O UF B

%3 9. M 2&/FMARFZER X NS 2MVEIEL RN ESATZ: WER ¢ € X AU R Parseval 55

WAV
]| = Z [(z, e)]”.

eeM
RE 9. ot 1% Parseval FHHMER v € X oz, & M ARTEEMEIER R, LA L], W
FAAEAERN) w0 € X, H 2o L M. FRLIXNMEMAY e € M, (w0, e) = 0. {H] Parseval Z=A] Al
||'TOH2 = Z |<3§'0,€>|2 = 07

eeM



B zo =0, 5 zo #0 FJE. Bt M BEAMMIERLR.
VEME. M BEAMTEIER R, WXHMER © € X, BHAEBWEEM ZECH (z,e1), (T, e2),
ey HZ BTG SITT LVANE, v = D o0 (z,ei)e; < co. XMERE i € Nt f

<$ - y’ei> = <'T7ei> - <yv€i> = <mv€i> - <xaej><eja6i> = <5L’, ei> - <I?6i> =0.

IV

I
-

J

XF M HR—PIf#iE (z,e) =0 1 e A

<.’IJ - y,€> = <$,€> - Z<-’L‘,€j><€j,€> =0.

=il

Btz —y e MY i M 2R M- = {0}, At —y =0, ll 2 =y.

<.

%3] 10. fl7 1 P =ARERE L (-7, ) MERMEERR.
RE 10. XMEWIUEARN R ER B 1.

#:3] 11. Consider the Legendre polynomials defined on [—1, 1] by
- d.’IZ"

(a) Show that if f is indefinitely differentiable on [—1,1], then

/1 L,(z)f(z)dx = (=1)" /1(3:2 — 1)”f(") (x) dx.

L,(z) (2 —=1)", n=0,1,2....

In particular, show that L,, is orthogonal to 2™ whenever m < n. Hence {L, }2° , is an orthogonal

family.

(b) Show that

1 1)292n+1
2l = [ |Eatear = 2
1 2n+1

n

(c) Prove that any polynomial of degree n that is orthogonal to 1,z, 22, ..., 2"~ is a constant multiple

of L,.

(d) Let L, = L,/||Ly||, the normalized Legendre polynomials. Prove that {L,,} is the family obtained
by applying the Gram-Schmidt process to {1,z,...,z",...}, and conclude that every Riemann

integrable function f on [—1, 1] has a Legendre expansion

oo

> {f L) Ln

n=0

which converges to f in the mean-square sense.



fRE 11.

(a) We start by integrating by parts n times. Let u = f(z) and dv = L,(z)dx =
a" (2
dx™

— 1)"dz. Then

| L@@ = |05 )

f(z) dni (2 — 1) ] / f(z dn (z? — 1)" dx.

Since (22 — 1)" = (z — 1)"(z + 1)" vanishes to order n at x = £1, all boundary terms vanish

after n integrations by parts. After n steps we obtain

[ L@@ = [ @ -1 de

1 1

Now take f(x) = ™ with m < n. Then f™(z) =0, so

1
/ L, (z)x™ dz = 0.
1

Thus L,, is orthogonal to all polynomials of degree less than n, and hence the family {L,,}>

is orthogonal.

(b) Using the result from part (a) with f = L,, note that L\ (z) = d‘f; (z% — 1)™ = (2n)!, since

(x> — 1)™ is a polynomial of degree 2n. Thus

1

L2 = /1Ln(x)2dx _ (—1)"(2n)!/1(x2 1) da.

Let J, = fjl(xz — 1)"dx. Write (22 — 1)" = (x — 1)"(x + 1)" and integrate by parts with
)

u=(x—1)" and dv = (z + 1)"dz. The boundary terms vanish, and we obtain
n 1
= — — 1)t 1) de.
J, e /_1(:10 T x+ 1) x

Note that (z — 1) }(z + 1)"* = (2% — 1)""!(x + 1)?. Expanding,
(x+1) 2 =2*+2x+1,

(2 —-1D" Yz +1)2=(2®-1)" 2% +2(z®> - )" 'z + (> - 1)*!

Now,

1 1 1 1

/ (22— 'z’ dr = / (x2—1)"1(x2—1—|—1)dx—/ (z2—1)™ dx—l—/ (22-1)""Vdz = J,+Jn1.
-1 —1 =i —1

The term 2 f_ll(:c2 —1)"tadz = 0 since the integrand is odd. Therefore,

1
/ (- 1)"Yzx+1)2de=(Jp+Jn1) + 0+ Jp 1 = Jp +2J, 1.

1



Substituting into the expression for J,, gives

n

Solving the recurrence with Jy = 2 yields

" 22n+1(n!)2

Ip = (_1)

(2n+ 1)
Therefore,
22n+1(n!)2 22n+1(n!)2
L.|I? = (=1)"(2n)! - (=1)" =
Ll = (1P (@n)t- (-1 G = S
Let P(z) be a polynomial of degree n that is orthogonal to 1, z, 2%, ... ,2"~!. We want to show

that P(z) = ¢L,(x) for some constant c.

Let P,, denote the vector space of polynomials of degree at most n over [—1,1] with the inner

product 1
(frg) = /_1 f(z)g(x) dx.

The set {1,z,22,...,2" 1} spans a subspace V,, C P, of dimension n. The orthogonal com-
plement of V,, in P, denoted V,;-, has dimension dim(P,) — dim(V,,) = (n+ 1) —n = 1.

From part (a), we know that L, is orthogonal to all polynomials of degree less than n. Specif-
ically, for any m < n,
(L, z™) =0,

so L, € V. Moreover, L, is nonzero because it is a polynomial of degree n (its leading

coefficient is positive and can be shown to be (2n)!/n!).

Now, since P is also in V.- by assumption, and V- is one-dimensional, P must be a scalar

multiple of L,,. Formally, there exists a constant ¢ such that P = cL,,.

To determine ¢, consider the difference Q(xz) = P(z) — ¢L,(z) where we choose ¢ so that the
coefficient of 2™ in @ is zero (i.e., ¢ is the ratio of the leading coefficients of P and L,). Then
@ is a polynomial of degree at most n — 1. Moreover, since both P and L,, are orthogonal to

V.., their difference @ is also orthogonal to V,,. In particular, @ is orthogonal to itself:

(@,Q)=0.
This implies Q(z) = 0 almost everywhere, and since @ is a polynomial, @ = 0. Thus P(z) =

cLy(z).

Let L, = L,/|Ln|, so that ||L,|] = 1. We claim that the sequence {L,}2, is exactly
the orthonormal family obtained by applying the Gram—-Schmidt process to the monomials
{1,z,2%,...} with respect to the inner product (f, g) = fil f(z)g(z) dx.



The Gram-Schmidt process applied to {1, z, z?, ...} produces an orthonormal sequence {p, }>°,
where each p, is a polynomial of degree n and is orthogonal to all p,, with m < n. By
construction, p, is also orthogonal to 1,z,...,2"! (since these are linear combinations of
Pos---yPn_1)- By part (c), p, must be a constant multiple of L,. That is, p, = ¢,L, for
some nonzero constant ¢,. Normalizing gives p, = +L,,. We can adjust the sign (if necessary)
so that the leading coefficient of p,, is positive, which then ensures p,, = L,. (The standard

Legendre polynomials are usually defined to have positive leading coefficient, e.g., L, (1) = 1.)

Thus, the normalized Legendre polynomials {I:n} form an orthonormal system obtained via

Gram—-Schmidt from the monomials.

Now, the Weierstrass approximation theorem states that polynomials are dense in the space
of continuous functions on [—1,1] with respect to the uniform norm. Since the uniform norm
dominates the L? norm, polynomials are also dense in L?[—1,1]. Therefore, the orthonormal

system {L,} is complete in L?*[—1,1].

For any Riemann integrable function f on [—1,1], we have f € L?[—1,1] (since Riemann
integrability implies boundedness and hence square integrability). By the general theory of
Hilbert spaces, the Fourier series of f with respect to a complete orthonormal system converges

to f in the L? norm (mean-square sense). That is,

N
lim f—;% L)L, =o.

L2
Equivalently,
f= Z( f,L,)L, in the mean-square sense.
n=0

This completes the proof.
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