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定义 1. 设 X 是复线性空间, 如果对任意 x, y ∈ X 有一复数 ⟨x, y⟩ 与之对应, 且满足以下条件:

(1) ⟨x, x⟩ ≥ 0, 且当且仅当 x = 0 时取等号;

(2) ⟨x, y⟩ = ⟨y, x⟩;

(3) 对任意复数 α, β 有 ⟨αx1 + βx2, y⟩ = α⟨x1, y⟩+ β⟨x2, y⟩;

则称 ⟨·, ·⟩ 为 X 上的一个内积, 称配备内积的复线性空间为内积空间.
设 X 是内积空间, 令

∥x∥ =
√
⟨x, x⟩, ∀x ∈ X.

可以验证 ∥x∥ 满足范数的三条性质 (正定性, 齐次性, 三角不等式), 我们称 ∥ · ∥ 为 X 上的由内积诱导

的范数. 可以看到内积空间也是一种特殊的赋范空间. 若 X 按照由内积诱导的范数完备, 则称 X 为希

尔伯特空间.

练习 1. 设 X 是内积空间, 证明柯西-施瓦茨不等式: 对任意 x, y ∈ X 有

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥,

其中 ∥x∥ =
√
⟨x, x⟩.

解答 1. 若 y = 0, 则不等式显然成立. 现设 y ≠ 0, 则对任意复数 λ 有

0 ≤ ⟨x− λy, x− λy⟩ = ⟨x, x⟩ − λ⟨y, x⟩ − λ⟨x, y⟩+ |λ|2⟨y, y⟩.

取 λ = ⟨x,y⟩
⟨y,y⟩ 可得

0 ≤ ⟨x, x⟩ − |⟨x, y⟩|2

⟨y, y⟩
,

即

|⟨x, y⟩|2 ≤ ⟨x, x⟩ · ⟨y, y⟩.

因此

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥.
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练习 2. 内积是关于两个变元的连续函数.

解答 2. 设 {xn} 和 {yn} 分别是内积空间 X 中收敛于 x 和 y 的序列, 则

|⟨xn, yn⟩ − ⟨x, y⟩| = |⟨xn, yn − y⟩+ ⟨xn − x, y⟩|

≤ |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩|

≤ ∥xn∥ · ∥yn − y∥+ ∥xn − x∥ · ∥y∥.

由于 {xn} 收敛, 因此 {∥xn∥} 有界, 设存在常数 M > 0 使得 ∥xn∥ ≤ M 对任意 n 成立. 由于 {yn}
收敛于 y, 因此 ∥yn − y∥ → 0 (n → ∞). 同理, ∥xn − x∥ → 0 (n → ∞). 因此

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ M · ∥yn − y∥+ ∥xn − x∥ · ∥y∥ → 0 (n → ∞).

即

lim
n→∞

⟨xn, yn⟩ = ⟨x, y⟩.

练习 3. 考虑平方可积函数空间 L2(a, b), 定义内积为

⟨f, g⟩ =
∫ b

a

f(x)g(x) dx, ∀f, g ∈ L2(a, b),

由该内积诱导的范数为

∥f∥2 =
(∫ b

a

|f(x)|2 dx
)1/2

, ∀f ∈ L2(a, b).

事实上, L2(a, b) 是一个希尔伯特空间.

解答 3. 这个定理只需证明它的完备性, 但是为此还需要很多准备, 因此不是证明它的好时机.

定义 2. 设 X 是内积空间, x, y 是 X 中的元素, 如果 ⟨x, y⟩ = 0, 则称 x 与 y 正交, 记作 x ⊥ y. 如果
X 的子集 A 中每个向量都与子集 B 中的每个向量正交, 则称 A 与 B 正交.

定义 3 (正交系). 设 M 是内积空间 X 的一个不含 0 元的子集, 如果 M 中任意两个不同的向量都正

交, 则称 M 为 X 的一个正交系. 进一步地, 若 M 中的每个向量范数都为 1, 则称 M 为 X 的一个规范

正交系.

例子 1. 在 L2(−π, π) 中, 定义内积为

⟨f, g⟩ = 1

π

∫ π

−π

f(x)g(x) dx, ∀f, g ∈ L2(−π, π).
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那么集合 { 1√
2
, cosx, sinx, cos 2x, sin 2x, . . .

}
是 L2(−π, π) 的一个规范正交系.

定义 4. 设 X 是赋范线性空间, x1, x2, · · · 是 X 中的一列向量, α1, α2, · · · 是一列数, 作形式级数
∞∑
i=1

αixi,

称 Sn =
∑n

i=1 αixi 是该级数的部分和, 如果部分和列 {Sn} 收敛于 x ∈ X, 则称该级数在 X 中收敛, 并
称 x 为该级数的和, 记作

x =
∞∑
i=1

αixi.

练习 4. 若 M 为 X 中的规范正交系, e1, e2, · · · 是 M 中的有限个或可列个向量, 且 x =
∑∞

i=1 αiei, 则

x =

∞∑
j=1

⟨x, ej⟩ej .

解答 4. 由于 M 为规范正交系, 因此对任意 i ̸= j 有 ⟨ei, ej⟩ = 0, 且 ∥ei∥ = 1. 因此对任意 n ∈ N+

有 〈
x, ej

〉
=

〈 ∞∑
i=1

αiei, ej

〉
=

∞∑
i=1

αi⟨ei, ej⟩ = αj .

因此
∞∑
j=1

⟨x, ej⟩ej =
∞∑
j=1

αjej = x.

定义 5. 设 M 是内积空间 X 的规范正交系, x ∈ X, 称数集

{⟨x, e⟩|e ∈ M}

为 x 关于规范正交系 M 的傅里叶系数集, ⟨x, e⟩ 称为 x 关于 e 的傅里叶系数.

练习 5. 设 M 是内积空间 X 的规范正交系, 任取 M 中的有限个向量 e1, . . . , en, 证明

(1) 对任意 x ∈ X 有 ∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥
2

= ∥x∥2 −
n∑

i=1

|⟨x, ei⟩|2 ≥ 0.

(2) 对任意的 x ∈ X 有 ∥∥∥∥∥∥x−
n∑

i=1

αiei

∥∥∥∥∥∥ ≥

∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥ , ∀α1, α2, . . . , αn ∈ C.
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解答 5. (1) 由于 M 为规范正交系, 因此对任意 i ̸= j 有 ⟨ei, ej⟩ = 0, 且 ∥ei∥ = 1. 因此对任意
n ∈ N+ 有 ∥∥∥∥∥∥x−

n∑
i=1

⟨x, ei⟩ei

∥∥∥∥∥∥
2

=

〈
x−

n∑
i=1

⟨x, ei⟩ei, x−
n∑

j=1

⟨x, ej⟩ej

〉

=⟨x, x⟩ −
n∑

j=1

⟨x, ej⟩⟨x, ej⟩ −
n∑

i=1

⟨x, ei⟩⟨x, ei⟩+
n∑

i=1

|⟨x, ei⟩|2

=∥x∥2 −
n∑

i=1

|⟨x, ei⟩|2.

由于范数非负, 因此 ∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥
2

= ∥x∥2 −
n∑

i=1

|⟨x, ei⟩|2 ≥ 0.

(2) 同样地, 对任意 n ∈ N+ 有∥∥∥∥∥∥x−
n∑

i=1

αiei

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥
2

=

〈
x−

n∑
i=1

αiei, x−
n∑

j=1

αjej

〉
−

〈
x−

n∑
i=1

⟨x, ei⟩ei, x−
n∑

j=1

⟨x, ej⟩ej

〉

=∥x∥2 −
n∑

j=1

αj⟨x, ej⟩ −
n∑

i=1

αi⟨x, ei⟩+
n∑

i=1

|αi|2 − ∥x∥2 +
n∑

j=1

|⟨x, ej⟩|2

=

n∑
i=1

|αi|2 −
n∑

i=1

αi⟨x, ei⟩ −
n∑

i=1

αi⟨x, ei⟩+
n∑

i=1

|⟨x, ei⟩|2

=
n∑

i=1

|αi − ⟨x, ei⟩|2 ≥ 0.

因此 ∥∥∥∥∥∥x−
n∑

i=1

αiei

∥∥∥∥∥∥ ≥

∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥ .
从证明中我们可以看出, 当且仅当 αi = ⟨x, ei⟩ 时等号成立. 并且若用 e1, . . . , en 的线性组合去

逼近 x, 则最佳的选择就是取傅里叶系数.
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练习 6. 证明如下的 Bessel 不等式: 设 M 是内积空间 X 的规范正交系, 则对任意 x ∈ X 有
∞∑
i=1

|⟨x, ei⟩|2 ≤ ∥x∥2.

解答 6. 由上一个练习的结论可知, 对任意 n ∈ N+ 有∥∥∥∥∥∥x−
n∑

i=1

⟨x, ei⟩ei

∥∥∥∥∥∥
2

= ∥x∥2 −
n∑

i=1

|⟨x, ei⟩|2 ≥ 0.

因此
n∑

i=1

|⟨x, ei⟩|2 ≤ ∥x∥2.

由于上式对任意 n 都成立, 因此取极限可得
∞∑
i=1

|⟨x, ei⟩|2 ≤ ∥x∥2.

练习 7. 设 {ek} 为希尔伯特空间 X 中可数规范正交系, 那么

(1) 级数
∑∞

i=1 αiei 收敛的充要条件是
∑∞

i=1 |αi|2 < ∞.

(2) 若 x =
∑∞

i=1 αiei，则 αi = ⟨x, ei⟩, ∀i ∈ N+; 故

x =
∞∑
i=1

⟨x, ei⟩ei.

(3) 对任意 x ∈ X,
∑∞

i=1⟨x, ei⟩ei 收敛.

解答 7. (1) 设 Sn =
∑n

i=1 αiei, σn =
∑n

i=1 |αi|2, 由于 {ei} 是规范正交系, 因此对任意正整数
n > m 有

∥Sn − Sm∥2 =
∥∥∥ n∑

i=m+1

αiei

∥∥∥2

=
n∑

i=m+1

|αi|2 = σn − σm.

所以 {Sn} 是 X 中 Cauchy 列的充要条件是 {σn} 是 R 中 Cauchy (数) 列, 由 X 和 R 的完备

性可以知道 {Sn} 收敛的充要条件是 {σn} 收敛, 即
∑∞

i=1 |αi|2 < ∞.

(2) 证明与之前习题类似.

(3) 由 Bessel 不等式可知, 对任意 x ∈ X 有

∞∑
i=1

|⟨x, ei⟩|2 ≤ ∥x∥2 < ∞.
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由 (1) 和 (2) 可知, 级数
∑∞

i=1⟨x, ei⟩ei 收敛.
我们很容易得到以下的推论: 设 {ek} 为希尔伯特空间 X 中可数规范正交系, 则对任意 x ∈ X,

lim
n→∞

⟨x, en⟩ = 0.

(级数收敛的必要条件)

定义 6. 设 M 是希尔伯特空间 X 的规范正交系, 如果

spanM = X,

则称 M 为 X 的完全规范正交系.

练习 8. 设 M 是希尔伯特空间 X 的完全规范正交系, 那么 M 完全的充要条件是 M⊥ = {0}.

解答 8. 我们事实上只需要证明: 若 M 是希尔伯特空间 X 中的非空子集, 则 M 的线性包 spanM
在 X 中稠密的充要条件是 M⊥ = {0}.
设 x ∈ M⊥, 若 spanM 在 X 中稠密, 则 x ∈ spanM , 因此存在 {xn} ∈ spanM , 使得 xn → x

(n → ∞). 由内积的连续性, ⟨x, x⟩ = 0, 因此 x = 0. 所以 M⊥ = {0}.
反之, 若 M⊥ = {0}, 如果 x ⊥ spanM , 则 x ⊥ M , 因此 x ∈ M⊥. 由 M⊥ = {0} 可知 x = 0.

因此 (spanM)⊥ = {0}. 但 (spanM)⊥ = (spanM)⊥, 利用投影定理可知 spanM = X. 事实上, 令
Y := spanM . 由假设有 Y ⊥ = {0}. 对任意 x ∈ X, 由投影定理可得唯一分解

x = y + z, y ∈ Y, z ∈ Y ⊥.

由于 z ∈ Y ⊥ = {0}, 所以 z = 0, 从而 x = y ∈ Y . 因 x 任取, 故 Y = X, 即 spanM = X.
注意: 这里的投影定理是希尔伯特空间中的投影定理, 它的证明需要更多的努力. 现在不是直

接证明它的好时机.

练习 9. M 是希尔伯特空间 X 的完全规范正交系的充要条件是: 对任意 x ∈ X 有如下的 Parseval 等
式成立:

∥x∥2 =
∑
e∈M

|⟨x, e⟩|2.

解答 9. 充分性. 设 Parseval 等式对任意 x ∈ X 成立. 若 M 不是完全规范正交系, 由以上练习, 则
存在非零的 x0 ∈ X, 且 x0 ⊥ M . 所以对任何的 e ∈ M , 有 ⟨x0, e⟩ = 0. 但由 Parseval 等式可知

∥x0∥2 =
∑
e∈M

|⟨x0, e⟩|2 = 0,
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因此 x0 = 0, 与 x0 ̸= 0 矛盾. 因此 M 是完全规范正交系.
必要性. 设 M 是完全规范正交系, 则对任意 x ∈ X, 设其非零的傅里叶系数为 ⟨x, e1⟩, ⟨x, e2⟩,

. . ., 由之前的练习可以知道, y =
∑∞

i=1⟨x, ei⟩ei < ∞. 对任意 i ∈ N+ 有

⟨x− y, ei⟩ = ⟨x, ei⟩ − ⟨y, ei⟩ = ⟨x, ei⟩ −
∞∑
j=1

⟨x, ej⟩⟨ej , ei⟩ = ⟨x, ei⟩ − ⟨x, ei⟩ = 0.

又对 M 中一切使得 ⟨x, e⟩ = 0 的 e 也有

⟨x− y, e⟩ = ⟨x, e⟩ −
∞∑
j=1

⟨x, ej⟩⟨ej , e⟩ = 0.

因此 x− y ∈ M⊥. 由 M 的完全性可知 M⊥ = {0}, 因此 x− y = 0, 即 x = y.

练习 10. 例子 1 中的三角函数系是 L2(−π, π) 的完全规范正交系.

解答 10. 这个证明现在不是介绍它的最好时机. 略.

练习 11. Consider the Legendre polynomials defined on [−1, 1] by

Ln(x) =
dn

dxn
(x2 − 1)n, n = 0, 1, 2, . . . .

(a) Show that if f is indefinitely differentiable on [−1, 1], then∫ 1

−1

Ln(x)f(x) dx = (−1)n
∫ 1

−1

(x2 − 1)nf (n)(x) dx.

In particular, show that Ln is orthogonal to xm whenever m < n. Hence {Ln}∞n=0 is an orthogonal
family.

(b) Show that

∥Ln∥2 =
∫ 1

−1

|Ln(x)|2 dx =
(n!)222n+1

2n+ 1
.

(c) Prove that any polynomial of degree n that is orthogonal to 1, x, x2, . . . , xn−1 is a constant multiple
of Ln.

(d) Let L̃n = Ln/∥Ln∥, the normalized Legendre polynomials. Prove that {L̃n} is the family obtained
by applying the Gram–Schmidt process to {1, x, . . . , xn, . . . }, and conclude that every Riemann
integrable function f on [−1, 1] has a Legendre expansion

∞∑
n=0

⟨f, L̃n⟩L̃n

which converges to f in the mean-square sense.
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解答 11. (a) We start by integrating by parts n times. Let u = f(x) and dv = Ln(x)dx =
dn

dxn (x
2 − 1)ndx. Then∫ 1

−1

Ln(x)f(x) dx =

[
f(x)

dn−1

dxn−1
(x2 − 1)n

]1

−1

−
∫ 1

−1

f ′(x)
dn−1

dxn−1
(x2 − 1)n dx.

Since (x2 − 1)n = (x − 1)n(x + 1)n vanishes to order n at x = ±1, all boundary terms vanish
after n integrations by parts. After n steps we obtain∫ 1

−1

Ln(x)f(x) dx = (−1)n
∫ 1

−1

(x2 − 1)nf (n)(x) dx.

Now take f(x) = xm with m < n. Then f (n)(x) = 0, so∫ 1

−1

Ln(x)x
m dx = 0.

Thus Ln is orthogonal to all polynomials of degree less than n, and hence the family {Ln}∞n=0

is orthogonal.

(b) Using the result from part (a) with f = Ln, note that L
(n)
n (x) = d2n

dx2n (x
2 − 1)n = (2n)!, since

(x2 − 1)n is a polynomial of degree 2n. Thus

∥Ln∥2 =
∫ 1

−1

Ln(x)
2 dx = (−1)n(2n)!

∫ 1

−1

(x2 − 1)n dx.

Let Jn =
∫ 1

−1
(x2 − 1)n dx. Write (x2 − 1)n = (x − 1)n(x + 1)n and integrate by parts with

u = (x− 1)n and dv = (x+ 1)ndx. The boundary terms vanish, and we obtain

Jn = − n

n+ 1

∫ 1

−1

(x− 1)n−1(x+ 1)n+1 dx.

Note that (x− 1)n−1(x+ 1)n+1 = (x2 − 1)n−1(x+ 1)2. Expanding,

(x+ 1)2 = x2 + 2x+ 1,

so
(x2 − 1)n−1(x+ 1)2 = (x2 − 1)n−1x2 + 2(x2 − 1)n−1x+ (x2 − 1)n−1.

Now,∫ 1

−1

(x2−1)n−1x2 dx =

∫ 1

−1

(x2−1)n−1(x2−1+1) dx =

∫ 1

−1

(x2−1)n dx+

∫ 1

−1

(x2−1)n−1 dx = Jn+Jn−1.

The term 2
∫ 1

−1
(x2 − 1)n−1x dx = 0 since the integrand is odd. Therefore,∫ 1

−1

(x2 − 1)n−1(x+ 1)2 dx = (Jn + Jn−1) + 0 + Jn−1 = Jn + 2Jn−1.
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Substituting into the expression for Jn gives

Jn = − n

n+ 1
(Jn + 2Jn−1) ⇒ (2n+ 1)Jn = −2nJn−1.

Solving the recurrence with J0 = 2 yields

Jn = (−1)n
22n+1(n!)2

(2n+ 1)!
.

Therefore,
∥Ln∥2 = (−1)n(2n)! · (−1)n

22n+1(n!)2

(2n+ 1)!
=

22n+1(n!)2

2n+ 1
.

(c) Let P (x) be a polynomial of degree n that is orthogonal to 1, x, x2, . . . , xn−1. We want to show
that P (x) = cLn(x) for some constant c.

Let Pn denote the vector space of polynomials of degree at most n over [−1, 1] with the inner
product

⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx.

The set {1, x, x2, . . . , xn−1} spans a subspace Vn ⊂ Pn of dimension n. The orthogonal com-
plement of Vn in Pn, denoted V ⊥

n , has dimension dim(Pn)− dim(Vn) = (n+ 1)− n = 1.

From part (a), we know that Ln is orthogonal to all polynomials of degree less than n. Specif-
ically, for any m < n,

⟨Ln, x
m⟩ = 0,

so Ln ∈ V ⊥
n . Moreover, Ln is nonzero because it is a polynomial of degree n (its leading

coefficient is positive and can be shown to be (2n)!/n!).

Now, since P is also in V ⊥
n by assumption, and V ⊥

n is one-dimensional, P must be a scalar
multiple of Ln. Formally, there exists a constant c such that P = cLn.

To determine c, consider the difference Q(x) = P (x) − cLn(x) where we choose c so that the
coefficient of xn in Q is zero (i.e., c is the ratio of the leading coefficients of P and Ln). Then
Q is a polynomial of degree at most n − 1. Moreover, since both P and Ln are orthogonal to
Vn, their difference Q is also orthogonal to Vn. In particular, Q is orthogonal to itself:

⟨Q,Q⟩ = 0.

This implies Q(x) = 0 almost everywhere, and since Q is a polynomial, Q ≡ 0. Thus P (x) =

cLn(x).

(d) Let L̃n = Ln/∥Ln∥, so that ∥L̃n∥ = 1. We claim that the sequence {L̃n}∞n=0 is exactly
the orthonormal family obtained by applying the Gram–Schmidt process to the monomials
{1, x, x2, . . . } with respect to the inner product ⟨f, g⟩ =

∫ 1

−1
f(x)g(x) dx.
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The Gram-Schmidt process applied to {1, x, x2, . . . } produces an orthonormal sequence {pn}∞n=0

where each pn is a polynomial of degree n and is orthogonal to all pm with m < n. By
construction, pn is also orthogonal to 1, x, . . . , xn−1 (since these are linear combinations of
p0, . . . , pn−1). By part (c), pn must be a constant multiple of Ln. That is, pn = cnLn for
some nonzero constant cn. Normalizing gives pn = ±L̃n. We can adjust the sign (if necessary)
so that the leading coefficient of pn is positive, which then ensures pn = L̃n. (The standard
Legendre polynomials are usually defined to have positive leading coefficient, e.g., Ln(1) = 1.)

Thus, the normalized Legendre polynomials {L̃n} form an orthonormal system obtained via
Gram–Schmidt from the monomials.

Now, the Weierstrass approximation theorem states that polynomials are dense in the space
of continuous functions on [−1, 1] with respect to the uniform norm. Since the uniform norm
dominates the L2 norm, polynomials are also dense in L2[−1, 1]. Therefore, the orthonormal
system {L̃n} is complete in L2[−1, 1].

For any Riemann integrable function f on [−1, 1], we have f ∈ L2[−1, 1] (since Riemann
integrability implies boundedness and hence square integrability). By the general theory of
Hilbert spaces, the Fourier series of f with respect to a complete orthonormal system converges
to f in the L2 norm (mean-square sense). That is,

lim
N→∞

∥∥∥∥∥∥f −
N∑

n=0

⟨f, L̃n⟩L̃n

∥∥∥∥∥∥
L2

= 0.

Equivalently,

f =
∞∑

n=0

⟨f, L̃n⟩L̃n in the mean-square sense.

This completes the proof.
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