Confluent hypergeometric kernel determinant on multiple large intervals

Taiyang Xu, Lun Zhang and Zhengyang Zhao

School of Mathematical Sciences, Fudan University arXiv:2508.10463

15/10/2025 @BMS RMT Seminar

Outline

1. Introduction

2. Main results

3. About the proofs

Introduction

The joint probability density function (jpdf) of eigenvalues for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n) = \frac{1}{\mathcal{Z}_n} \prod_{k=1}^n e^{-\lambda_k^2} \prod_{1 \leq k < j \leq n} (\lambda_k - \lambda_j)^2.$$

The joint probability density function (jpdf) of eigenvalues with FH singularity for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n)=\frac{1}{\mathcal{Z}_n}\prod_{k=1}^n e^{-\lambda_k^2}|\lambda_k|^{2\alpha}\chi_{\beta}(\lambda_k)\prod_{1\leqslant k< j\leqslant n}(\lambda_k-\lambda_j)^2,$$

The joint probability density function (jpdf) of eigenvalues with FH singularity for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n)=\frac{1}{\mathcal{Z}_n}\prod_{k=1}^n e^{-\lambda_k^2|\lambda_k|^{2\alpha}}\chi_{\beta}(\lambda_k)\prod_{1\leqslant k< j\leqslant n}(\lambda_k-\lambda_j)^2,$$

where

• \mathcal{Z}_n : normalization constant.

The joint probability density function (jpdf) of eigenvalues with FH singularity for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n)=\frac{1}{\mathcal{Z}_n}\prod_{k=1}^n e^{-\lambda_k^2|\lambda_k|^{2\alpha}}\chi_{\beta}(\lambda_k)\prod_{1\leqslant k< j\leqslant n}(\lambda_k-\lambda_j)^2,$$

where

- \mathcal{Z}_n : normalization constant.
- $\chi_{\beta}(\lambda)$ has the jump-type singularity with $\beta \in i\mathbb{R}$:

$$\chi_{eta}(\lambda) := egin{cases} e^{-i\pieta}, & \lambda\geqslant 0, \ e^{i\pieta}, & \lambda< 0. \end{cases}$$

The joint probability density function (jpdf) of eigenvalues with FH singularity for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n) = \frac{1}{\mathcal{Z}_n} \prod_{k=1}^n e^{-\lambda_k^2 |\lambda_k|^{2\alpha}} \chi_{\beta}(\lambda_k) \prod_{1 \leqslant k < j \leqslant n} (\lambda_k - \lambda_j)^2,$$

where

- \mathcal{Z}_n : normalization constant.
- $\chi_{\beta}(\lambda)$ has the jump-type singularity with $\beta \in i\mathbb{R}$:

$$\chi_{eta}(\lambda) := egin{cases} e^{-i\pieta}, & \lambda\geqslant 0, \ e^{i\pieta}, & \lambda< 0. \end{cases}$$

• $|\lambda|^{2\alpha}$: root-type singularity, $\alpha > -1/2$.

The joint probability density function (jpdf) of eigenvalues with FH singularity for GUE:

$$f_n(\lambda_1,\ldots,\lambda_n)=\frac{1}{\mathcal{Z}_n}\prod_{k=1}^n e^{-\lambda_k^2|\lambda_k|^{2\alpha}}\chi_{\beta}(\lambda_k)\prod_{1\leqslant k< j\leqslant n}(\lambda_k-\lambda_j)^2,$$

where

- \mathcal{Z}_n : normalization constant.
- $\chi_{\beta}(\lambda)$ has the jump-type singularity with $\beta \in i\mathbb{R}$:

$$\chi_{eta}(\lambda) := egin{cases} e^{-i\pieta}, & \lambda\geqslant 0, \ e^{i\pieta}, & \lambda< 0. \end{cases}$$

- $|\lambda|^{2\alpha}$: root-type singularity, $\alpha > -1/2$.
- jump-type singularity & root-type singularity \rightsquigarrow **Fisher-Hartwig** singularity (at z = 0).

The jpdf of Dyson circular unitary ensemble with FH singularity:

$$f_n(\theta_1,\ldots,\theta_n)=\frac{1}{\mathcal{Z}'_n}\prod_{k=1}^n|1-e^{i\theta_k}|^{2\alpha}e^{i\beta(\theta_k-\pi)}\prod_{1\leqslant k< j\leqslant n}|e^{i\theta_k}-e^{i\theta_j}|^2,$$

where

- \mathcal{Z}'_n : normalization constant.
- $\theta_k \in [0, 2\pi), \ k = 1, \ldots, n$.
- FH singularity at z = 1, (i.e., $\theta = 0$).

The correlation kernel

The above eigenvalues form a **determinant point process** (DPP), which is characterized by a correlation kernel $K_n(x, y; \alpha, \beta)$, that is,

$$\rho(\lambda_1,\ldots,\lambda_n) = \det \left[\mathsf{K}_n(\lambda_i,\lambda_j;\alpha,\beta) \right]_{i,j=1}^n.$$

The correlation kernel

The above eigenvalues form a **determinant point process** (DPP), which is characterized by a correlation kernel $K_n(x, y; \alpha, \beta)$, that is,

$$\rho(\lambda_1,\ldots,\lambda_n) = \det \left[K_n(\lambda_i,\lambda_j;\alpha,\beta) \right]_{i,j=1}^n.$$

• GUE: $K_n(x, y; \alpha, \beta) = \sqrt{w(x)} \sqrt{w(y)} \sum_{j=0}^{n-1} p_j(x) p_j(y)$. $p_j(x)$ are orthonormal polynomials with the weight function w(x) over \mathbb{R} , i.e.,

$$\int_{\mathbb{R}} p_i(x)p_j(x)w(x) dx = \delta_{ij}, \quad w(x) = e^{-x^2}|x|^{2\alpha}\chi_{\beta}(x).$$

The correlation kernel

The above eigenvalues form a **determinant point process** (DPP), which is characterized by a correlation kernel $K_n(x, y; \alpha, \beta)$, that is,

$$\rho(\lambda_1,\ldots,\lambda_n) = \det \left[K_n(\lambda_i,\lambda_j;\alpha,\beta) \right]_{i,j=1}^n.$$

• GUE: $K_n(x, y; \alpha, \beta) = \sqrt{w(x)} \sqrt{w(y)} \sum_{j=0}^{n-1} p_j(x) p_j(y)$. $p_j(x)$ are orthonormal polynomials with the weight function w(x) over \mathbb{R} , i.e.,

$$\int_{\mathbb{D}} p_i(x)p_j(x)w(x) dx = \delta_{ij}, \quad w(x) = e^{-x^2}|x|^{2\alpha}\chi_{\beta}(x).$$

• CUE: $K_n(e^{i\theta}, e^{i\phi}; \alpha, \beta) = \sqrt{w(e^{i\theta})} \sqrt{w(e^{i\phi})} \sum_{j=0}^{n-1} p_j(e^{i\theta}) \overline{p_j(e^{i\phi})}$.

$$\int_0^{2\pi} p_i(e^{i\theta}) \overline{p_j(e^{i\theta})} w(e^{i\theta}) d\theta = \delta_{jk}, \quad w(z) = z^n |z-1|^{2\alpha} z^{\beta} e^{-i\pi\beta}, \ z = e^{i\theta}.$$

Large-*n* limiting kernel

In the bulk (near the FH singular point), the correlation kernel $K_n(x, y; \alpha, \beta)$ converges to **confluent hypergeometric kernel** $K^{(\alpha,\beta)}(x,y)$ under a suitable scaling.

Large-*n* limiting kernel

In the bulk (near the FH singular point), the correlation kernel $K_n(x, y; \alpha, \beta)$ converges to **confluent hypergeometric kernel** $K^{(\alpha,\beta)}(x,y)$ under a suitable scaling.

• Unitary random matrix ensembles generated by a concrete weight function on the unit circle.

[Deift-Krasovsky-Vasilevska, '11]

Large-*n* limiting kernel

In the bulk (near the FH singular point), the correlation kernel $K_n(x, y; \alpha, \beta)$ converges to **confluent hypergeometric kernel** $K^{(\alpha,\beta)}(x,y)$ under a suitable scaling.

• Unitary random matrix ensembles generated by a concrete weight function on the unit circle.

[Deift-Krasovsky-Vasilevska, '11]

• it describes the local statistics of eigenvalues in the bulk of the spectrum near a FH singular point for a broad class of unitary ensemble of random matrices.

The confluent hypergeometric kernel

The confluent hypergeometric (CH) kernel with two parameters $\alpha > -1/2$ and $\beta \in i\mathbb{R}$ is defined by

$$K^{(\alpha,\beta)}(x,y) = \frac{1}{2\pi i} \frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^2} \frac{A(x)B(y) - A(y)B(x)}{x-y},$$

The confluent hypergeometric kernel

The confluent hypergeometric (CH) kernel with two parameters $\alpha > -1/2$ and $\beta \in \mathbb{R}$ is defined by

$$K^{(\alpha,\beta)}(x,y) = \frac{1}{2\pi i} \frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^2} \frac{A(x)B(y) - A(y)B(x)}{x-y},$$

• $\Gamma(z)$ denotes the usual Gamma function. A(x) and B(x) are defined by

$$A(x) := \chi_{\beta}(x)^{\frac{1}{2}} |2x|^{\alpha} e^{-ix} \phi(1 + \alpha + \beta, 1 + 2\alpha; 2ix),$$

$$B(x) := \chi_{\beta}(x)^{\frac{1}{2}} |2x|^{\alpha} e^{ix} \phi(1 + \alpha - \beta, 1 + 2\alpha; -2ix).$$

The confluent hypergeometric kernel

The confluent hypergeometric (CH) kernel with two parameters $\alpha > -1/2$ and $\beta \in i\mathbb{R}$ is defined by

$$K^{(\alpha,\beta)}(x,y) = \frac{1}{2\pi i} \frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^2} \frac{A(x)B(y) - A(y)B(x)}{x-y},$$

• $\Gamma(z)$ denotes the usual Gamma function. A(x) and B(x) are defined by

$$A(x) := \chi_{\beta}(x)^{\frac{1}{2}} |2x|^{\alpha} e^{-ix} \phi(1 + \alpha + \beta, 1 + 2\alpha; 2ix),$$

$$B(x) := \chi_{\beta}(x)^{\frac{1}{2}} |2x|^{\alpha} e^{ix} \phi(1 + \alpha - \beta, 1 + 2\alpha; -2ix).$$

• The confluent hypergeometric function is defined by

$$\phi(a, b; z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(b)_n} \frac{z^n}{n!}, \qquad b \neq 0, -1, -2, \dots,$$

where $(z)_n := z(z+1)\cdots(z+n-1) = \frac{\Gamma(z+n)}{\Gamma(z)}$ is the Pochhammer symbol.

Universal features of the confluent hypergeometric kernel

The confluent hypergeometric kernel arises in several different, but related areas

Universal features of the confluent hypergeometric kernel

The confluent hypergeometric kernel arises in several different, but related areas

• Infinite random matrices and Hua-Pickrell measure.

[Borodin-Olshanski, '01]

• Representation theory.

[Borodin-Deift, '01]

• Circular unitary ensemble.

[Deift-Krasovsky-Vasilevska, '11]

Confluent hypergeometric kernel can reduce to other kernels

• If $\beta = 0$, $\alpha \neq 0$, following from the relation

$$\phi(\alpha, 2\alpha; 2ix) = \Gamma\left(\alpha + \frac{1}{2}\right) e^{ix} \left(\frac{x}{2}\right)^{-\alpha + \frac{1}{2}} J_{\alpha - \frac{1}{2}}(x),$$

Confluent hypergeometric kernel can reduce to other kernels

• If $\beta = 0$, $\alpha \neq 0$, following from the relation

$$\phi(\alpha, 2\alpha; 2ix) = \Gamma\left(\alpha + \frac{1}{2}\right) e^{ix} \left(\frac{x}{2}\right)^{-\alpha + \frac{1}{2}} J_{\alpha - \frac{1}{2}}(x),$$

then we have type-I Bessel kernel

$$\begin{split} \textit{K}^{(\alpha,0)}(\textit{x},\textit{y}) &\equiv \textit{K}^{(\mathsf{Bessel1})}(\textit{x},\textit{y}) = \\ & \left(\frac{|\textit{x}|}{\textit{x}}\right)^{\alpha} \left(\frac{|\textit{y}|}{\textit{y}}\right)^{\alpha} \frac{\sqrt{\textit{x}\textit{y}}}{2} \frac{\textit{J}_{\alpha+\frac{1}{2}}(\textit{x})\textit{J}_{\alpha-\frac{1}{2}}(\textit{x}) - \textit{J}_{\alpha+\frac{1}{2}}(\textit{y})\textit{J}_{\alpha-\frac{1}{2}}(\textit{x})}{\textit{x}-\textit{y}}. \end{split}$$

[Akemann-Damgaard-Magnea-Nishigaki, '97] [Kuijlaars-Vanlessen, '03]

Confluent hypergeometric kernel can reduce to other kernels

• If $\beta = 0$, $\alpha \neq 0$, following from the relation

$$\phi(\alpha, 2\alpha; 2ix) = \Gamma\left(\alpha + \frac{1}{2}\right) e^{ix} \left(\frac{x}{2}\right)^{-\alpha + \frac{1}{2}} J_{\alpha - \frac{1}{2}}(x),$$

then we have type-I Bessel kernel

$$\mathcal{K}^{(\alpha,0)}(x,y) \equiv \mathcal{K}^{(\mathsf{Bessel1})}(x,y) = \left(\frac{|x|}{x}\right)^{\alpha} \left(\frac{|y|}{y}\right)^{\alpha} \frac{\sqrt{xy}}{2} \frac{J_{\alpha+\frac{1}{2}}(x)J_{\alpha-\frac{1}{2}}(x) - J_{\alpha+\frac{1}{2}}(y)J_{\alpha-\frac{1}{2}}(x)}{x - y}.$$

[Akemann-Damgaard-Magnea-Nishigaki, '97] [Kuijlaars-Vanlessen, '03]

An episode: Type-II Bessel kernel:

$$\mathsf{K}^{(\mathrm{Bessel2})}(x,y) := \frac{J_{\alpha}(\sqrt{x})\sqrt{y}J_{\alpha}'(\sqrt{y}) - \sqrt{x}J_{\alpha}'(\sqrt{x})J_{\alpha}(\sqrt{y})}{2(x-y)}.$$

[Forrester, '93]

• If $\alpha = 0$, $\beta \neq 0$, we have a degenerated confluent hypergeometric kernel.

[Tibboel, '10] [Moreno- Martínez-Finkelshtein -Sousa, '11]

• If $\alpha = 0$, $\beta \neq 0$, we have a degenerated confluent hypergeometric kernel.

[Tibboel, '10] [Moreno- Martínez-Finkelshtein -Sousa, '11]

• If $\alpha = \beta = 0$, we obtain the sine kernel

$$K^{(0,0)}(x,y) \equiv K^{(\text{sine})}(x,y) = \frac{\sin(x-y)}{\pi(x-y)}.$$

Gap probability for DPP

• The **Gap probability**: finding no eigenvalues on a specific interval Σ .

Gap probability for DPP

- The **Gap probability**: finding no eigenvalues on a specific interval Σ .
- Fredholm determinant representation:

$$\mathbb{P}(\mathsf{no}\;\mathsf{points}\;\mathsf{lie}\;\mathsf{on}\;\Sigma) = \mathcal{F}(\Sigma) := \mathsf{det}\,(1-\mathcal{K}|_{\Sigma})\,,$$

where K is an integration operator acting on $L^2(\Sigma)$ with integrable kernel K(x, y).

Gap probability for DPP

- The **Gap probability**: finding no eigenvalues on a specific interval Σ .
- Fredholm determinant representation:

$$\mathbb{P}(\mathsf{no}\ \mathsf{points}\ \mathsf{lie}\ \mathsf{on}\ \Sigma) = \mathcal{F}(\Sigma) := \mathsf{det}\left(1 - \mathcal{K}|_{\Sigma}\right),$$

where K is an integration operator acting on $L^2(\Sigma)$ with integrable kernel K(x,y).

• Our interest: large gap asymptotics

$$\mathcal{F}(s\Sigma) := \det(1 - \mathcal{K}|_{s\Sigma}) = ?$$
, as $s \to +\infty$,

especially the case that Σ is a union of disjoint intervals.

History: sine kernel determinant

$$\log \det \left(1 - \mathcal{K}^{(\mathsf{sine})}|_{s\Sigma}\right) = C_1 s^2 + C_2 \log s + C_3 \log \theta(V(s)) + C_4 + \mathcal{O}\left(s^{-1}\right), \quad s \to +\infty.$$

¹Combined the earlier work [Widom '71] on Toeplitz determinant.

History: sine kernel determinant

$$\log \det \left(1 - \mathcal{K}^{(\text{sine})}|_{s\Sigma}\right) = C_1 s^2 + C_2 \log s + C_3 \log \theta(\textit{V}(s)) + C_4 + \mathcal{O}\left(s^{-1}\right), \quad s \to +\infty.$$

Σ	C_1	C_2	C ₃	C ₄			
(-1,1)	[Dyson, '62] [Cloizeaux-Mehta, '73] [Widom, '94] $C_1 = -1/2$	[Deift-Its-Zhou, '97] $C_2 = -1/4$, $C_3 = 0$		$[Dyson, '76]^1$ $[Krasovsky, '04]$ $[Ehrhardt, '04]$ $[Deift-lts-Krasovsky, '07]$ $C_4 = (\log 2)/12 + 3\zeta'(-1)$			
$(-1, v_1) \cup (v_2, 1)$	[Fahs-Krasovsky, '22]						
$\cup_{j=0}^n(a_j,b_j)$	[Deift-Its-Z C_2 : integral	?					

Table: Large gap asymptotics for the sine kernel determinant.

¹Combined the earlier work [Widom '71] on Toeplitz determinant.

History: Airy kernel determinant

$$\log \det \left(1 - \mathcal{K}^{(\mathsf{Ai})}|_{s\Sigma}\right) = C_1 s^3 + C_2 \log s + C_3 \log \theta(V(s)) + C_4 + e(s), \quad s \to +\infty.$$

History: Airy kernel determinant

$$\log \det \left(1 - \mathcal{K}^{(\mathsf{Ai})}|_{s\Sigma}\right) = C_1 s^3 + C_2 \log s + C_3 \log \theta(V(s)) + C_4 + e(s), \quad s \to +\infty.$$

Σ	C_1	C_2	<i>C</i> ₃	e(s)	C ₄
$(-1,+\infty)$	[Tracy-Widom, '94] $C_1 = -1/12, C_2 = -1/8,$ $C_3 = 0, e(s) = \mathcal{O}(s^{-3/2})$			$C_2 = -1/8$,	[Deift-Its-Krasovsky, '08] [Baik-Buckingham-DiFranco, '08] $C_4 = (\log 2)/24 + \zeta'(-1)$
$(x_2, x_1) \cup (x_0, +\infty)$ $x_2 < x_1 < x_0 < 0$	[Blackstone-Charlier-Lenells, '22] $\rightsquigarrow e(s) = \mathcal{O}(s^{-1})$ [Krasovsky-Maroudas, '24]				[Krasovsky-Maroudas, '24]
$\bigcup_{j=0}^g (x_{2j}, x_{2j-1})$ $x_{-1} = +\infty$?				
(x_2, x_1)	[Blackstone-Charlier-Lenells, '21] $e(s) = \mathcal{O}(s^{-3/2})$?
$\bigcup_{j=1}^g (x_{2j},x_{2j-1})$?				

Table: Large gap asymptotics for the Airy kernel determinant.

History: type-II Bessel kernel determinant

$$\log \det (1 - \mathcal{K}^{(\mathsf{Bes}2)}|_{s\Sigma}) = \mathit{C}_1 s + \mathit{C}_2 s^{1/2} + \mathit{C}_3 \log s + \mathit{C}_4 \log \theta(\mathit{V}(s)) + \mathit{C}_5 + \mathcal{O}(s^{-1/2}), \quad s \to +\infty.$$

History: type-II Bessel kernel determinant

$$\log \det (1 - \mathcal{K}^{(\mathsf{Bes2})}|_{s\Sigma}) = \mathit{C}_1 s + \mathit{C}_2 s^{1/2} + \mathit{C}_3 \log s + \mathit{C}_4 \log \theta(\mathit{V}(s)) + \mathit{C}_5 + \mathcal{O}(s^{-1/2}), \quad s \to +\infty.$$

Σ	C_1	C_2	C_3	C_4	C_5
(0, x1)		Ó	$C_1 = -$	cy-Widom, '94] $-x_1/4$, $C_2 = \alpha \sqrt{x_1}$, $-\alpha^2/4$, $C_4 = 0$	$C_5 = G(1+\alpha)(2\pi)^{-\alpha/2} - (\alpha^2 \log x_1)/4$ [Ehrhardt, '10] $\leadsto \alpha \in (-1,1)$ [Deift-Krasovsky-Vasilevska, '11] $\leadsto \alpha \in (-1,+\infty)$
$\bigcup_{j=0}^{2g} (x_j, x_{j+1}) \\ x_0 = 0$	[Blackstone-Charlier-Lenells, 21'] C ₃ : exact value (under the ergodic condition)				?

Table: Large gap asymptotics for the type-II Bessel kernel determinant.

History: Confluent hypergeometric kernel determinant

As $s \to +\infty$,

$$\log \det(1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma}) = C_1 s^2 + C_2 s + (\beta^2 - \alpha^2 + C_3) \log s + C_4 \log \theta(V(s)) + C_5 + \mathcal{O}(s^{-1}).$$

History: Confluent hypergeometric kernel determinant

As $s \to +\infty$,

$$\log \det(1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma}) = C_1 s^2 + C_2 s + (\beta^2 - \alpha^2 + C_3) \log s + C_4 \log \theta(V(s)) + C_5 + \mathcal{O}(s^{-1}).$$

Σ	C_1	C_2	C_3	C ₄	C_5	
$0\in (-1,1)$	$\begin{aligned} & \text{[Deift-Krasovsky-Vasilevska, '11]} \\ & \text{[Xu-Zhao, '20]} \\ & C_1 = -1/2, \ C_2 = 2\alpha, \ C_3 = -1/4, \ C_4 = 0 \\ & C_5 = \log(\frac{\sqrt{\pi}G^2(1/2)G(1+2\alpha)}{2^{2\alpha^2}G(1+\alpha+\beta)G(1+\alpha-\beta)}) \end{aligned}$					
$0 \in (a_m,b_m) ext{ for some } m: 1 \leqslant m \leqslant n$?					

Table: Large gap asymptotics for the confluent hypergeometric kernel determinant.

Today's topic

Aim: establish large gap asymptotics for the confluent hypergeometric kernel determinant $\det(1-\mathcal{K}^{(\alpha,\beta)})$ on multiple large intervals.

 a_0 b_0 a_1 b_1 a_m a_m

Today's topic

Aim: establish large gap asymptotics for the confluent hypergeometric kernel determinant $det(1 - \mathcal{K}^{(\alpha,\beta)})$ on multiple large intervals.

$$a_0$$
 b_0 a_1 b_1 a_m a_m

Σ	C_1	C_2	<i>C</i> ₃	C ₄	C ₅	
(-1,1) $0 \in (-1,1)$	[Deift-Krasovsky-Vasilevska, '11]					
$0 \in (a_m, b_m) \text{ for some } m: 1 \leqslant m \leqslant n$	[Xu-	Zhang	-Zhao,	'25]	?	

Table: Large gap asymptotics for the confluent hypergeometric kernel determinant.

Main results

The Riemann surface

We will encounter a hyperelliptic Riemann surface ${\mathcal W}$ associated to the algebraic equation

$$\sqrt{\mathcal{R}(z)} := \sqrt{\prod_{j=0}^n \left(z-a_j
ight) \left(z-b_j
ight)}.$$

The Riemann surface

We will encounter a hyperelliptic Riemann surface ${\mathcal W}$ associated to the algebraic equation

$$\sqrt{\mathcal{R}(z)} := \sqrt{\prod_{j=0}^n (z-a_j)(z-b_j)}.$$

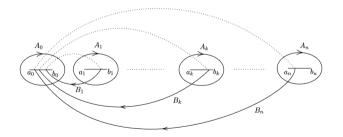


Figure: The canonical homology basis $\{A_j, B_j\}_{j=1}^n$ for the Riemann surface \mathcal{W} .

- $\sqrt{\mathcal{R}(z)} \sim \pm z^{n+1}$, as $z \to \infty$ on the first (second) sheet.
- Canonical homology basis $\{A_j, B_j\}$.

Preliminaries − The A-matrix

The \mathbb{A} -matrix:

$$\mathbb{A} := (a_{k,l})_{0 \leqslant k \leqslant n, 0 \leqslant l \leqslant n} = \begin{pmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,0} & a_{n,1} & \cdots & a_{n,n} \end{pmatrix},$$

$$\tilde{\mathbb{A}} := (a_{k,l})_{k=1,\dots,n}^{l=0,\dots,n-1} = \begin{pmatrix} a_{1,0} & a_{1,1} & \cdots & a_{1,n-1} \\ a_{2,0} & a_{2,1} & \cdots & a_{2,n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,0} & a_{n,1} & \cdots & a_{n,n-1} \end{pmatrix},$$

$$\vec{a} = (a_{0,n+1}, a_{1,n+1}, \dots, a_{n,n+1})^{\mathrm{T}},$$
where $a_{k,l} := \oint_{A_k} \frac{z^l}{\sqrt{\mathcal{R}(z)}} \, \mathrm{d}z = 2i(-1)^{n-k+1} \int_{a_k}^{b_k} \frac{z^l}{|\mathcal{R}(z)|^{\frac{1}{2}}} \, \mathrm{d}z.$

Preliminaries − The A-matrix

The \mathbb{A} -matrix:

$$\mathbb{A} := (a_{k,l})_{0 \leqslant k \leqslant n, 0 \leqslant l \leqslant n} = egin{pmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,n} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,n} \\ dots & dots & dots & dots \\ a_{n,0} & a_{n,1} & \cdots & a_{n,n} \end{pmatrix}, \ \tilde{\mathbb{A}} := (a_{k,l})_{k=1,\dots,n}^{l=0,\dots,n-1} = egin{pmatrix} a_{1,0} & a_{1,1} & \cdots & a_{1,n-1} \\ a_{2,0} & a_{2,1} & \cdots & a_{2,n-1} \\ dots & dots & dots & dots \\ a_{n,0} & a_{n,1} & \cdots & a_{n,n-1} \end{pmatrix},$$

$$\vec{a} = (a_{0,n+1}, a_{1,n+1}, \dots, a_{n,n+1})^{\mathrm{T}},$$

where
$$a_{k,l} := \oint_{A_k} \frac{z^l}{\sqrt{\mathcal{R}(z)}} dz = 2i(-1)^{n-k+1} \int_{a_k}^{b_k} \frac{z^l}{|\mathcal{R}(z)|^{\frac{1}{2}}} dz$$
.

 $\rightsquigarrow \mathbb{A}$ and $\tilde{\mathbb{A}}$ are invertible.

[Farkas-Kra, '92, Riemann Surfaces 2nd ed], 1/47

Preliminaries – The basis of one-form

Introduce the basis of holomorphic one-forms:

$$\vec{\omega} := (\omega_1, \omega_2, \dots, \omega_n) = \frac{\mathrm{d}z}{\sqrt{\mathcal{R}(z)}} (1, z, \dots, z^{n-1}) \tilde{\mathbb{A}}^{-1},$$

such that

$$\oint_{A_k} \omega_j = \delta_{jk}, \qquad j, k = 1, \dots, n.$$

Meanwhile, we have the Riemann matrix of B_j periods:

$$au := (au_{ij})_{i,j=1}^n = \left(\oint_{B_j} \omega_i\right)_{i,j=1}^n.$$

Preliminaries – The basis of one-form

Introduce the basis of holomorphic one-forms:

$$\vec{\omega} := (\omega_1, \omega_2, \dots, \omega_n) = \frac{\mathrm{d}z}{\sqrt{\mathcal{R}(z)}} (1, z, \dots, z^{n-1}) \tilde{\mathbb{A}}^{-1},$$

such that

$$\oint_{A_k} \omega_j = \delta_{jk}, \qquad j, k = 1, \dots, n.$$

Meanwhile, we have the Riemann matrix of B_j periods:

$$au := (au_{ij})_{i,j=1}^n = \left(\oint_{B_j} \omega_i\right)_{i,i=1}^n.$$

ightharpoonup au is symmetric and has a positively definite imaginary part, i.e, -i au is positive definite.

[Farkas-Kra, '92, Riemann Surfaces 2nd ed]

Preliminaries – Multi-dimensional Riemann- θ function and Abel's map

The multi-dimensional Riemann-heta function is defined by

$$\theta\left(\vec{z}\right) = \sum_{\vec{m} \in \mathbb{Z}^n} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{z} + i \pi \vec{m}^{\mathrm{T}} \tau \vec{m}}, \qquad \vec{z} = (z_1, \dots, z_n)^{\mathrm{T}} \in \mathbb{C}^n \text{ modulo } \mathbb{Z}^n.$$

- Converging absolutely and uniformly on compact sets of the \mathbb{C}^n .
- Even $(\theta(\vec{z}) = \theta(-\vec{z}))$, entire function for $\vec{z} \in \mathbb{C}^n$.
- Periodic properties: $\theta(\vec{z} + \vec{e}_j) = \theta(\vec{z})$ and $\theta(\vec{z} \pm \vec{\tau}_j) = e^{\mp 2\pi i z_j \pi i \tau_{jj}} \theta(\vec{z})$, where $\vec{e}_j = (0, \dots, 1, \dots, 0)^T$ with 1 in the *j*-th position and $\vec{\tau} := \tau \vec{e}_j$.
- Vanishing at each odd half-period: $\theta(\vec{z}) = 0$ if $\vec{z} = \frac{\vec{m}}{2} + \frac{\tau \vec{n}}{2}$ with $\vec{m}, \vec{n} \in \mathbb{Z}^n$ and $\vec{m}^T \vec{n}$ is odd.

Preliminaries – Multi-dimensional Riemann- θ function and Abel's map

The multi-dimensional Riemann-heta function is defined by

$$\theta\left(\vec{z}\right) = \sum_{\vec{m} \in \mathbb{Z}^n} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{z} + i\pi \vec{m}^{\mathrm{T}} \tau \vec{m}}, \qquad \vec{z} = (z_1, \ldots, z_n)^{\mathrm{T}} \in \mathbb{C}^n \text{ modulo } \mathbb{Z}^n.$$

- Converging absolutely and uniformly on compact sets of the \mathbb{C}^n .
- Even $(\theta(\vec{z}) = \theta(-\vec{z}))$, entire function for $\vec{z} \in \mathbb{C}^n$.
- Periodic properties: $\theta(\vec{z} + \vec{e}_j) = \theta(\vec{z})$ and $\theta(\vec{z} \pm \vec{\tau}_j) = e^{\mp 2\pi i z_j \pi i \tau_{jj}} \theta(\vec{z})$, where $\vec{e}_j = (0, \dots, 1, \dots, 0)^T$ with 1 in the *j*-th position and $\vec{\tau} := \tau \vec{e}_j$.
- Vanishing at each odd half-period: $\theta(\vec{z}) = 0$ if $\vec{z} = \frac{\vec{m}}{2} + \frac{\tau \vec{n}}{2}$ with $\vec{m}, \vec{n} \in \mathbb{Z}^n$ and $\vec{m}^T \vec{n}$ is odd.

Abel's map:

$$\vec{\mathcal{A}}(z) := \int_{z}^{z} \vec{\omega}^{\mathrm{T}}.$$

Preliminaries – The polynomial, linear vector and frequencies

The following polynomial of degree n+1 plays an important role in our analysis:

$$p(z) = z^{n+1} + \sum_{j=0}^{n} p_j z^j.$$

$$\oint_{A_k} \frac{\mathrm{p}(s)}{\sqrt{\mathcal{R}(s)}} \, \mathrm{d}s = 0, \ k = 0, 1, \dots, n. \implies (p_0, \dots, p_n)^{\mathrm{T}} = -\mathbb{A}^{-1} \vec{\boldsymbol{a}}.$$

Preliminaries – The polynomial, linear vector and frequencies

The following polynomial of degree n+1 plays an important role in our analysis:

$$p(z)=z^{n+1}+\sum_{j=0}^n p_jz^j.$$

$$\oint_{A_k} \frac{\mathrm{p}(s)}{\sqrt{\mathcal{R}(s)}} \, \mathrm{d}s = 0, \ k = 0, 1, \dots, n. \implies (p_0, \dots, p_n)^{\mathrm{T}} = -\mathbb{A}^{-1} \vec{\mathbf{a}}.$$

A column vector with linear components:

$$ec{V}(s) := (V_1(s), \ldots, V_n(s))^{\mathrm{T}}, \quad V_j(s) := rac{s}{2\pi}\Omega_j + rac{1}{2\pi}\operatorname{Im}(\zeta_j) \in \mathbb{R}.$$

- Frequencies $\Omega_j := 2 \sum_{k=0}^{j-1} (-1)^{n-k} \int_{b_k}^{a_{k+1}} \frac{\mathrm{p}(s)}{|\mathcal{R}(s)|^{\frac{1}{2}}} \, \mathrm{d}s > 0.$
- Im $\zeta_i \in \mathbb{R}$ is dependent of α and β .

A function $\mathcal{L}: \mathbb{C} \times \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{C}$ defined by

$$\mathcal{L}(z, \vec{\mu}) = \frac{h(z)}{\mathrm{p}(z)} \eta(z, \vec{\mu}).$$

where
$$h(z) = \prod_{k=0}^{n} (z - a_k) + \prod_{k=0}^{n} (z - b_k)$$
, and $\eta(z, \vec{\mu}) = \frac{\theta(\vec{0})^2 \theta(\vec{\mathcal{A}}(z) + \vec{\mu} + \vec{d}) \theta(\vec{\mathcal{A}}(z) - \vec{\mu} + \vec{d})}{\theta(\vec{\mu})^2 \theta(\vec{\mathcal{A}}(z) + \vec{d})^2}$.

A function $\mathcal{L}: \mathbb{C} \times \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{C}$ defined by

$$\mathcal{L}(z, \vec{\mu}) = \frac{h(z)}{p(z)} \eta(z, \vec{\mu}).$$

where
$$h(z) = \prod_{k=0}^{n} (z - a_k) + \prod_{k=0}^{n} (z - b_k)$$
, and $\eta(z, \vec{\mu}) = \frac{\theta(\vec{0})^2 \theta(\vec{\mathcal{A}}(z) + \vec{\mu} + \vec{d}) \theta(\vec{\mathcal{A}}(z) - \vec{\mu} + \vec{d})}{\theta(\vec{\mu})^2 \theta(\vec{\mathcal{A}}(z) + \vec{d})^2}$.

Consider
$$\mathcal{L}(p, \vec{V}(t))$$
 for $p \in \mathcal{I}_e := \{a_j, b_j\}_{j=0}^n$

A function $\mathcal{L}: \mathbb{C} \times \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{C}$ defined by

$$\mathcal{L}(z, \vec{\mu}) = \frac{h(z)}{\mathrm{p}(z)} \eta(z, \vec{\mu}).$$

where
$$h(z) = \prod_{k=0}^{n} (z - a_k) + \prod_{k=0}^{n} (z - b_k)$$
, and $\eta(z, \vec{\mu}) = \frac{\theta(\vec{0})^2 \theta(\vec{\mathcal{A}}(z) + \vec{\mu} + \vec{d}) \theta(\vec{\mathcal{A}}(z) - \vec{\mu} + \vec{d})}{\theta(\vec{\mu})^2 \theta(\vec{\mathcal{A}}(z) + \vec{d})^2}$.

Consider
$$\mathcal{L}(p, \vec{V}(t))$$
 for $p \in \mathcal{I}_e := \{a_j, b_j\}_{j=0}^n$

• $\mathcal{L}(p, \vec{V}(t))$ is real-valued and analytic.

A function $\mathcal{L}: \mathbb{C} \times \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{C}$ defined by

$$\mathcal{L}(z,\vec{\mu}) = \frac{h(z)}{\mathrm{p}(z)} \eta(z,\vec{\mu}).$$

where
$$h(z) = \prod_{k=0}^{n} (z - a_k) + \prod_{k=0}^{n} (z - b_k)$$
, and $\eta(z, \vec{\mu}) = \frac{\theta(\vec{0})^2 \theta(\vec{\mathcal{A}}(z) + \vec{\mu} + \vec{d}) \theta(\vec{\mathcal{A}}(z) - \vec{\mu} + \vec{d})}{\theta(\vec{\mu})^2 \theta(\vec{\mathcal{A}}(z) + \vec{d})^2}$.

Consider
$$\mathcal{L}(p, \vec{V}(t))$$
 for $p \in \mathcal{I}_e := \{a_j, b_j\}_{j=0}^n$

- $\mathcal{L}(p, \vec{V}(t))$ is real-valued and analytic.
- $\mathcal{L}(p,\cdot)$ is periodic on $\mathbb{R}^n/\mathbb{Z}^n$.

A function $\mathcal{L}: \mathbb{C} \times \mathbb{R}^n/\mathbb{Z}^n \to \mathbb{C}$ defined by

$$\mathcal{L}(z, \vec{\mu}) = \frac{h(z)}{p(z)} \eta(z, \vec{\mu}).$$

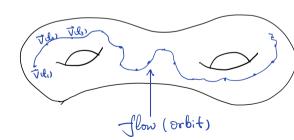
where
$$h(z) = \prod_{k=0}^{n} (z - a_k) + \prod_{k=0}^{n} (z - b_k)$$
, and $\eta(z, \vec{\mu}) = \frac{\theta(\vec{0})^2 \theta(\vec{\mathcal{A}}(z) + \vec{\mu} + \vec{d}) \theta(\vec{\mathcal{A}}(z) - \vec{\mu} + \vec{d})}{\theta(\vec{\mu})^2 \theta(\vec{\mathcal{A}}(z) + \vec{d})^2}$.

Consider $\mathcal{L}(p, \vec{V}(t))$ for $p \in \mathcal{I}_e := \{a_j, b_j\}_{j=0}^n$

•
$$\mathcal{L}(p, \vec{V}(t))$$
 is real-valued and analytic.

•
$$\mathcal{L}(p,\cdot)$$
 is periodic on $\mathbb{R}^n/\mathbb{Z}^n$.

$$\implies \vec{V}(t)$$
 is a **linear flow (orbit)** on the torus $\mathbb{R}^n/\mathbb{Z}^n$.



Large gap asymptotics: general case

Theorem (X.-Zhang-Zhao, '25)

Let $\mathcal{F}(s\Sigma) := \det(1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma})$ and $\Sigma := \bigcup_{j=0}^n (a_j,b_j)$ be such that $a_1 < b_1 < \dots < a_m < 0 < b_m < \dots < a_n < b_n$ for some $0 \le m \le n$. For $\alpha > -1/2$ and $\beta \in \mathbb{R}$, we have, as $s \to +\infty$,

$$\log \mathcal{F}(s\Sigma) = -\gamma_0 s^2 - 2i\mathcal{D}_{\infty,1} s + \log \theta \left(\vec{V}(s)\right) + (\beta^2 - \alpha^2) \log s$$

$$- \frac{1}{16} \sum_{i=0}^n \int_{\hat{s}}^s \left(\mathcal{L}\left(\mathsf{a}_j, \vec{V}\!(t)\right) + \mathcal{L}\left(\mathsf{b}_j, \vec{V}\!(t)\right) \right) \frac{\mathrm{d}t}{t} + \widecheck{\mathsf{C}}_1 + \mathcal{O}(\mathsf{s}^{-1}),$$

where

$$\gamma_0 = -\frac{1}{\pi i} \sum_{z=1}^n \int_{z=1}^{b_j} \frac{z p(z)}{\sqrt{\mathcal{R}(z)}} dz \in \mathbb{R},$$

 $\mathcal{D}_{\infty,1}$ is purely imaginary and depends on the parameters α and β , $\vec{V}(s) \in \mathbb{R}^n$ is defined above, $\hat{s} > 0$ is a sufficiently large number independent of s, $\mathcal{L}(p,\vec{V}(t))$ is real for $p \in \mathcal{I}_e := \{a_j,b_j\}_{j=0}^n$ and \check{C}_1 is an undetermined constant independent of s. Moreover, for $p \in \mathcal{I}_e$, as $s \to +\infty$, we have

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + o(\log s), \quad \hat{\mathcal{L}}_{p} := \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t.$$

• If n = 0, $\Sigma = (-1, 1)$, we have

$$p(z) = z, \quad \gamma_0 = \frac{1}{2}, \quad \mathcal{D}_{\infty,1} = i\alpha, \quad \mathcal{L}(p, \vec{V}(t)) = \mathcal{L}(z, 0) = 2.$$

• If n = 0, $\Sigma = (-1, 1)$, we have

$$p(z) = z, \quad \gamma_0 = \frac{1}{2}, \quad \mathcal{D}_{\infty,1} = i\alpha, \quad \mathcal{L}(p, \vec{V}(t)) = \mathcal{L}(z, 0) = 2.$$

 \implies Reduce to the results in [Deift-Krasovsky-Vasilevska, '11] (except the constant term).

• If n = 0, $\Sigma = (-1, 1)$, we have

$$p(z) = z, \quad \gamma_0 = \frac{1}{2}, \quad \mathcal{D}_{\infty,1} = i\alpha, \quad \mathcal{L}(p, \vec{V}(t)) = \mathcal{L}(z, 0) = 2.$$

⇒ Reduce to the results in [Deift-Krasovsky-Vasilevska, '11] (except the constant term).

• For general n>1, $\beta=0$ \Longrightarrow The large gap asymptotics for the type-I Bessel kernel determinant on multiple intervals.

• If n = 0, $\Sigma = (-1, 1)$, we have

$$p(z) = z, \quad \gamma_0 = \frac{1}{2}, \quad \mathcal{D}_{\infty,1} = i\alpha, \quad \mathcal{L}(p, \vec{V}(t)) = \mathcal{L}(z, 0) = 2.$$

⇒ Reduce to the results in [Deift-Krasovsky-Vasilevska, '11] (except the constant term).

- For general n>1, $\beta=0$ \Longrightarrow The large gap asymptotics for the type-I Bessel kernel determinant on multiple intervals.
- For general n > 1, if $\alpha = \beta = 0 \implies$ The results is consistent with the Eq. (1.34) in [Deift-Its-Zhou, '97].

Question: Could we improve the asymptotics

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + o(\log s), \quad \hat{\mathcal{L}}_{p} := \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t.$$
as $s \to +\infty$?

Question: Could we improve the asymptotics

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + o(\log s), \quad \hat{\mathcal{L}}_{p} := \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t.$$
as $s \to +\infty$?

Aim 1:
$$o(\log s) \rightsquigarrow \mathcal{O}(s^{-1})$$

Question: Could we improve the asymptotics

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + o(\log s), \quad \hat{\mathcal{L}}_{p} := \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t.$$
as $s \to +\infty$?

Aim 1: $o(\log s) \rightsquigarrow \mathcal{O}(s^{-1})$

Definition (good Diophantine property)

The linear flow

$$(0,+\infty)
ightarrow s\mapsto (V_1(s)\mod 1,\quad V_2(s)\mod 1\quad \dots\quad V_n(s)\mod 1),\quad V_j(s)=rac{s}{2\pi}\Omega_j+rac{1}{2\pi}\operatorname{Im}\zeta_j,$$

has "good Diophantine properties" if there exist $\delta_1,\delta_2>0$ such that

$$|\vec{m}^{\mathrm{T}}\vec{\Omega}| \geq \delta_1 ||\vec{m}||_2^{-\delta_2}$$
 for all $\vec{m} \in \mathbb{Z}^{n \times 1}$ with $\vec{m}^{\mathrm{T}}\vec{\Omega} \neq 0$,

where $\vec{\Omega} := (\Omega_1, \dots, \Omega_n)^{\mathrm{T}}$ and $\|\vec{m}\|_2 = |\vec{m}^{\mathrm{T}}\vec{m}|^{\frac{1}{2}}$.

Theorem (X.-Zhang-Zhao, '25)

Let $\Sigma = \bigcup_{j=0}^n (a_j, b_j)$ be fixed such that $a_0 < b_0 < \dots < a_m < 0 < b_m < \dots < a_n < b_n$ for some $0 \le m \le n$ and assume that the good diophantine properties holds. As $s \to +\infty$, one has

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + C_{p} + \mathcal{O}(s^{-1}),$$

where $p \in \mathcal{I}_e$ and C_p is independent of s. Thus, we have, as $s \to +\infty$,

$$\log \mathcal{F}(s\Sigma) = -\gamma_0 s^2 - 2i\mathcal{D}_{\infty,1} s + \log \theta \left(\vec{V}(s)\right) + \left[\beta^2 - \alpha^2 - \frac{1}{16} \sum_{j=0}^n (\hat{\mathcal{L}}_{a_j} + \hat{\mathcal{L}}_{b_j})\right] \log s + \breve{\mathcal{L}}_2 + \mathcal{O}(s^{-1}),$$

where $\check{C}_2 = \check{C}_1 - \frac{1}{16} \sum_{j=0}^n (C_{a_j} + C_{b_j})$ is a constant independent of s with \check{C}_1 as in the asymptotics of the general case.

Aim 2: Simplify the $\hat{\mathcal{L}}_p := \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t$.

Aim 2: Simplify the $\hat{\mathcal{L}}_p := \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathcal{L}\left(p, \vec{V}(t)\right) dt$.

Definition (ergodic property)

The linear flow

$$(0,+\infty)
ightarrow s\mapsto (V_1(s)\mod 1,\quad V_2(s)\mod 1\quad \dots\quad V_n(s)\mod 1),\quad V_j(s)=rac{s}{2\pi}\Omega_j+rac{1}{2\pi}\operatorname{Im}\zeta_j,$$

is ergodic in the *n*-dimensional torus $\mathbb{R}^n/\mathbb{Z}^n$ if $\{\vec{V}(s) \mod \mathbb{Z}^n\}_{s>0}$ is dense in $\mathbb{R}^n/\mathbb{Z}^n$. Equivalently, the linear flow is ergodic in $\mathbb{R}^n/\mathbb{Z}^n$ if $\{\Omega_j\}_{j=1}^n$ are rationally independent, that is, if there exist $(c_1,c_2,\ldots,c_n)\in\mathbb{Z}^n$ such that

$$c_1\Omega_1+c_2\Omega_2+\cdots+c_n\Omega_n=0,$$

then $c_1 = c_2 = \cdots = c_n = 0$.

Aim 2: Simplify the $\hat{\mathcal{L}}_p := \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathcal{L}\left(p, \vec{V}(t)\right) dt$.

Definition (ergodic property)

The linear flow

$$(0,+\infty)
ightarrow s\mapsto (V_1(s)\mod 1,\quad V_2(s)\mod 1\quad \dots\quad V_n(s)\mod 1),\quad V_j(s)=rac{s}{2\pi}\Omega_j+rac{1}{2\pi}\operatorname{Im}\zeta_j,$$

is ergodic in the *n*-dimensional torus $\mathbb{R}^n/\mathbb{Z}^n$ if $\{\vec{V}(s) \mod \mathbb{Z}^n\}_{s>0}$ is dense in $\mathbb{R}^n/\mathbb{Z}^n$. Equivalently, the linear flow is ergodic in $\mathbb{R}^n/\mathbb{Z}^n$ if $\{\Omega_j\}_{j=1}^n$ are rationally independent, that is, if there exist $(c_1,c_2,\ldots,c_n)\in\mathbb{Z}^n$ such that

$$c_1\Omega_1+c_2\Omega_2+\cdots+c_n\Omega_n=0,$$

then $c_1 = c_2 = \cdots = c_n = 0$.

Theorem (Birkhoff's ergodic theorem)

The time average exists everywhere, and coincides with the space average if f is continuous (or merely Riemann integrable) and the frequencies Ω_i are independent.

Applying Birkhoff's ergodic theorem to $\hat{\mathcal{L}}_{p} := \lim_{T \to +\infty} \frac{1}{T} \int_{0}^{T} \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t$

Applying Birkhoff's ergodic theorem to $\hat{\mathcal{L}}_p := \lim_{T \to +\infty} rac{1}{T} \int_0^T \mathcal{L}\left(p, \vec{V}(t)\right) \mathrm{d}t$

Theorem (X.-Zhang-Zhao, '25)

Let $\Sigma = \bigcup_{j=0}^{n} (a_j, b_j)$ be fixed such that $a_0 < b_0 < \dots < a_m < 0 < b_m < \dots < a_n < b_n$ for some $0 \le m \le n$ and assume that $\vec{\Omega}$ satisfies ergodic properties. As $s \to +\infty$, one has

$$\int_{\hat{s}}^{s} \mathcal{L}\left(p, \vec{V}(t)\right) \frac{\mathrm{d}t}{t} = \hat{\mathcal{L}}_{p} \log s + o(\log s), \quad \hat{\mathcal{L}}_{p} = \frac{h(p)}{\mathrm{p}(p)} \int_{[0,1)^{n}} \eta(p; u_{1}, u_{2}, \dots u_{n}) \, \mathrm{d}u_{1} \cdots \mathrm{d}u_{n}.$$

Thus, we have, as $s \to +\infty$,

$$\log \mathcal{F}(s\Sigma) = -\gamma_0 s^2 - 2i\mathcal{D}_{\infty,1} s + \left[\beta^2 - \alpha^2 - \frac{1}{16} \sum_{j=0}^n (\hat{\mathcal{L}}_{a_j} + \hat{\mathcal{L}}_{b_j})\right] \log s + o(\log s),$$

where the constant $\hat{\mathcal{L}}_p$, $p \in \mathcal{I}_e$, is explicitly given by the n-fold integral.

Large gap asymptotics: genus n = 1 case

In the case of n = 1, the linear flow satisfies both good Diophantine properties and ergodic properties.

Large gap asymptotics: genus n = 1 case

In the case of n = 1, the linear flow satisfies both good Diophantine properties and ergodic properties.

It could be calculated that $\hat{\mathcal{L}}_p = \frac{h(p)}{p(p)} \int_{[0,1)} \eta(p; u_1) du_1 = 2$ for $p \in \{a_0, b_0, a_1, b_1\}$.

Large gap asymptotics: genus n = 1 case

In the case of n = 1, the linear flow satisfies both good Diophantine properties and ergodic properties.

It could be calculated that $\hat{\mathcal{L}}_p = \frac{h(p)}{p(p)} \int_{[0,1)} \eta(p; u_1) du_1 = 2$ for $p \in \{a_0, b_0, a_1, b_1\}$.

Theorem (X.-Zhang-Zhao, '25)

Let $\Sigma := (a_0, b_0) \cup (a_1, b_1)$ be fixed such that $a_0 < b_0 < a_1 < 0 < b_1$ (or $a_0 < 0 < b_0 < a_1 < b_1$). For $\alpha > -1/2$ and $\beta \in i\mathbb{R}$, we have, as $s \to +\infty$,

$$\log \mathcal{F}(s\Sigma) = -\gamma_0 s^2 - 2i\mathcal{D}_{\infty,1} s + \log \theta \left(V_1(s)\right) + \left(\beta^2 - \alpha^2 - \frac{1}{2}\right) \log s + C + \mathcal{O}(s^{-1}),$$

where C is an undetermined constant independent of s.

Let

$$\mathcal{S}_{D} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \mathrm{has} \ \text{``good Diophantine property''} \right\}, \ \mathcal{S}_{E} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \mathrm{is \ rationally \ independent} \right\}.$$

Let

$$\mathcal{S}_{\mathcal{D}} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \text{has "good Diophantine property"} \right\}, \ \mathcal{S}_{\mathcal{E}} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \text{is rationally independent} \right\}.$$

We have some examples:

- Genus n = 1 case: $S_D = S_E = (0, +\infty)$;
- Genus n=2 case: (a) $\vec{\Omega}:=(1,\sqrt{2})\in\mathcal{S}_D\cap\mathcal{S}_E$; (b) $\vec{\Omega}:=(1,1)\in\mathcal{S}_D\setminus\mathcal{S}_E$; (c) $\vec{\Omega}:=(1,C_L)\in\mathcal{S}_E\setminus\mathcal{S}_D$ with $C_L=\sum_{n=1}^\infty 10^{-n!}$ be Liouville's constant.
- Genus n = 3 case: $\vec{\Omega} = (1, C_L, 1) \notin S_D \cup S_E$.
-

Let

$$\mathcal{S}_{\mathcal{D}} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \text{has "good Diophantine property"} \right\}, \ \mathcal{S}_{\mathcal{E}} := \left\{ \vec{\Omega} : \ \vec{\Omega} \ \text{is rationally independent} \right\}.$$

We have some examples:

- Genus n = 1 case: $S_D = S_E = (0, +\infty)$;
- Genus n=2 case: (a) $\vec{\Omega}:=(1,\sqrt{2})\in\mathcal{S}_D\cap\mathcal{S}_E$; (b) $\vec{\Omega}:=(1,1)\in\mathcal{S}_D\setminus\mathcal{S}_E$; (c) $\vec{\Omega}:=(1,C_L)\in\mathcal{S}_E\setminus\mathcal{S}_D$ with $C_L=\sum_{n=1}^\infty 10^{-n!}$ be Liouville's constant.
- Genus n=3 case: $\vec{\Omega}=(1,C_L,1)\notin \mathcal{S}_D\cup \mathcal{S}_E$.
-

For $n \ge 2$, all of the following cases can and do occur for certain choices of the edges points $\{a_j,b_j\}_{j=0}^n$.

$$\vec{\Omega} \notin \mathcal{S}_D \cup \mathcal{S}_E, \quad \vec{\Omega} \in \mathcal{S}_D \setminus \mathcal{S}_E, \quad \vec{\Omega} \in \mathcal{S}_E \setminus \mathcal{S}_D, \quad \vec{\Omega} \in \mathcal{S}_D \cap \mathcal{S}_E.$$

[Deift-Its-Zhou, '97]

• For the *n*-fold integral obtained in the ergodic case

$$\hat{\mathcal{L}}_{p} = \frac{h(p)}{p(p)} \int_{[0,1)^{n}} \eta(p; u_{1}, u_{2}, \ldots u_{n}) du_{1} \cdots du_{n},$$

- (a) It's been proved that $\hat{\mathcal{L}}_p \equiv 2$ for n=1.
- (b) Numerically, $\hat{\mathcal{L}}_p \equiv 2$ for all finite n > 1.

• For the *n*-fold integral obtained in the ergodic case

$$\hat{\mathcal{L}}_{p} = \frac{h(p)}{p(p)} \int_{[0,1)^{n}} \eta(p; u_{1}, u_{2}, \ldots u_{n}) du_{1} \cdots du_{n},$$

- (a) It's been proved that $\hat{\mathcal{L}}_p \equiv 2$ for n=1.
- (b) Numerically, $\hat{\mathcal{L}}_p \equiv 2$ for all finite n > 1.
- The multiplicative constant → challenge.

About the proofs

Rely on an integrable structure of the confluent hypergeometric kernel $K^{(\alpha,\beta)}(x,y)$

$$K^{(\alpha,\beta)}(x,y) = \frac{\vec{f}(x)^{\mathsf{T}}\vec{h}(y)}{x-y} = \frac{\sum_{k=1}^{2} f_k(x)h_k(y)}{x-y}.$$

Rely on an integrable structure of the confluent hypergeometric kernel $K^{(\alpha,\beta)}(x,y)$

$$K^{(\alpha,\beta)}(x,y) = \frac{\vec{f}(x)^{\mathsf{T}}\vec{h}(y)}{x-y} = \frac{\sum_{k=1}^{2} f_k(x)h_k(y)}{x-y}.$$

• $Y(z) := I - \int_{s\Sigma} \frac{\vec{F}(x)\vec{h}(x)^{\mathsf{T}}}{x-z} \,\mathrm{d}x$ satisfies an 2×2 RH problem, where $\vec{F}(z) = (1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma})^{-1}\vec{f}(z)$.

[Its-Izergin-Korepin-Slavnov, '90] [Deift-Its-Zhou, '97]

Rely on an integrable structure of the confluent hypergeometric kernel $K^{(\alpha,\beta)}(x,y)$

$$K^{(\alpha,\beta)}(x,y) = \frac{\vec{f}(x)^{\mathsf{T}}\vec{h}(y)}{x-y} = \frac{\sum_{k=1}^{2} f_k(x)h_k(y)}{x-y}.$$

• $Y(z) := I - \int_{s\Sigma} \frac{\vec{F}(x)\vec{h}(x)^{\mathsf{T}}}{x-z} \,\mathrm{d}x$ satisfies an 2×2 RH problem, where $\vec{F}(z) = (1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma})^{-1}\vec{f}(z)$.

[Its-Izergin-Korepin-Slavnov, '90] [Deift-Its-Zhou, '97]

• $\vec{f}(z)$ and $\vec{h}(z)$ are expressed in terms of a confluent hypergeometric parametrix $\Phi_{\rm CH}$. [Claevs-Its-Krasovsky, '11] [Xu-Zhao, '20]

Rely on an integrable structure of the confluent hypergeometric kernel $K^{(\alpha,\beta)}(x,y)$

$$K^{(\alpha,\beta)}(x,y) = \frac{\vec{f}(x)^{\mathsf{T}} \vec{h}(y)}{x-y} = \frac{\sum_{k=1}^{2} f_k(x) h_k(y)}{x-y}.$$

• $Y(z) := I - \int_{s\Sigma} \frac{\vec{F}(x)\vec{h}(x)^{\mathsf{T}}}{x-z} \, \mathrm{d}x$ satisfies an 2×2 RH problem, where $\vec{F}(z) = (1 - \mathcal{K}^{(\alpha,\beta)}|_{s\Sigma})^{-1} \vec{f}(z)$.

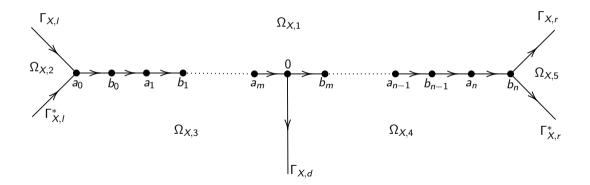
[Its-Izergin-Korepin-Slavnov, '90] [Deift-Its-Zhou, '97]

• $\vec{f}(z)$ and $\vec{h}(z)$ are expressed in terms of a confluent hypergeometric parametrix $\Phi_{\rm CH}$. [Claeys-Its-Krasovsky, '11] [Xu-Zhao, '20]

Undressing transform \rightsquigarrow an RH problem for X with constant jumps.

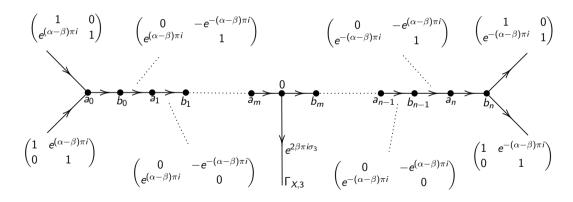
RH problem for X

(a) X(z) is holomorphic for $z \in \mathbb{C} \backslash \Gamma_X$



RH problem for X

(b) For $z \in \Gamma_X$, we have $X_+(z) = X_-(z)J_X(z)$.



RH problem for X

(c) As $z \to \infty$, we have

$$X(z) = \left(I + \frac{X_1(s)}{z} + \mathcal{O}\left(z^{-2}\right)\right) z^{-\beta\sigma_3} e^{-isz\sigma_3},$$

where

$$X_{1}(s) = (2s)^{\beta\sigma_{3}} \begin{pmatrix} \frac{1}{2s} \left(\Phi_{\text{CH},1} \right)_{11} + \frac{1}{s} (Y_{1}(s))_{11} \\ \frac{1}{2s} \left(\Phi_{\text{CH},1} \right)_{21} + \frac{1}{s} (Y_{1}(s))_{21} e^{\pi i \beta} \end{pmatrix} \frac{\frac{1}{2s} \left(\Phi_{\text{CH},1} \right)_{12} + \frac{1}{s} (Y_{1}(s))_{12} e^{-\pi i \beta}}{\frac{1}{2s} \left(\Phi_{\text{CH},1} \right)_{22} + \frac{1}{s} (Y_{1}(s))_{22}} \right) (2s)^{-\beta\sigma_{3}}$$
with $\Phi_{\text{CH},1} := \lim_{z \to \infty} z (\Phi_{\text{CH}}(z) z^{\beta\sigma_{3}} e^{\frac{i}{2}z\sigma_{3}} - I)$.

(d) As $z \to p$ from $\Omega_{X,1}$, $p \in \mathcal{I}_e$, we have $X(z) = \mathcal{O}(\log(z-p))$.

(e) As $z \rightarrow 0$ from Im z > 0, we have

$$X(z) = X_0(z)z^{\alpha\sigma_3},$$

where $X_0(z)$ is holomorphic in the neighborhood of 0. The behavior of X(z) as $z \to 0$ is determined by jump conditions.

39 / 47

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_s \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_e} f_p(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_s \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_e} f_p(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_s \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_e} f_p(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

For genus n case $(n \ge 2) \leadsto$ create difficulties in further simplification (All quantities that we encounter are vector-valued).

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_s \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_e} f_p(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

For genus n case $(n \ge 2) \leadsto$ create difficulties in further simplification (All quantities that we encounter are vector-valued). Particularly, one should expand a vector-valued function $f(\vec{z})$, $\vec{z} \in \mathbb{C}^n$ at a certain point \vec{z}_0 :

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_s \log \mathcal{F}(s\Sigma) = \sum_{oldsymbol{p} \in \mathcal{I}_e} f_{oldsymbol{p}}(lpha,eta) \lim_{oldsymbol{z} o oldsymbol{p}} \left(X^{-1}(oldsymbol{z}) X'(oldsymbol{z})
ight)_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

For genus n case $(n \ge 2) \leadsto$ create difficulties in further simplification (All quantities that we encounter are vector-valued). Particularly, one should expand a vector-valued function $f(\vec{z})$, $\vec{z} \in \mathbb{C}^n$ at a certain point \vec{z}_0 :

$$f(\vec{z}) = f(\vec{z}_0) + \langle \nabla f(\vec{z}_0), \vec{z} - \vec{z}_0 \rangle + \frac{1}{2} (\vec{z} - \vec{z}_0)^{\mathrm{T}} \nabla^2 f(\vec{z}_0) (\vec{z} - \vec{z}_0) + \operatorname{tensors} (\vec{z} - \vec{z}_0)^3 + \cdots$$

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_{s} \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_{e}} f_{p}(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

For genus n case $(n \ge 2) \leadsto$ create difficulties in further simplification (All quantities that we encounter are vector-valued). Particularly, one should expand a vector-valued function $f(\vec{z})$, $\vec{z} \in \mathbb{C}^n$ at a certain point \vec{z}_0 :

$$f(\vec{z}) = f(\vec{z}_0) + \langle \nabla f(\vec{z}_0), \vec{z} - \vec{z}_0 \rangle + \frac{1}{2} (\vec{z} - \vec{z}_0)^{\mathrm{T}} \nabla^2 f(\vec{z}_0) (\vec{z} - \vec{z}_0) + \operatorname{tensors} (\vec{z} - \vec{z}_0)^3 + \cdots$$

Difficulties: (a) several complex variables; (b) hard to evaluate the coefficients of higher order derivatives.

Usually, one could always relate $\partial_s \log \mathcal{F}(s\Sigma)$ to the local behavior of X at z=p for $p\in\mathcal{I}_e$

Proposition

$$\partial_{s} \log \mathcal{F}(s\Sigma) = \sum_{p \in \mathcal{I}_{e}} f_{p}(\alpha, \beta) \lim_{z \to p} (X^{-1}(z)X'(z))_{21}.$$

For genus 1 case, It's okay! (All quantities that we encounter are scalar-valued)

For genus n case $(n \ge 2) \leadsto$ create difficulties in further simplification (All quantities that we encounter are vector-valued). Particularly, one should expand a vector-valued function $f(\vec{z})$, $\vec{z} \in \mathbb{C}^n$ at a certain point \vec{z}_0 :

$$f(\vec{z}) = f(\vec{z}_0) + \langle \nabla f(\vec{z}_0), \vec{z} - \vec{z}_0 \rangle + \frac{1}{2} (\vec{z} - \vec{z}_0)^{\mathrm{T}} \nabla^2 f(\vec{z}_0) (\vec{z} - \vec{z}_0) + \operatorname{tensors}(\vec{z} - \vec{z}_0)^3 + \cdots$$

Difficulties: (a) several complex variables; (b) hard to evaluate the coefficients of higher order derivatives. \rightsquigarrow **We need a new one!**

Proposition (X.-Zhang-Zhao, '25)

We have

$$\partial_s \log \mathcal{F}(s\Sigma) = i((X_1(s))_{11} - (X_1(s))_{22}) - \frac{\alpha^2 - \beta^2}{s},$$

where X_1 is the residue term of X at infinity.

Proposition (X.-Zhang-Zhao, '25)

We have

$$\partial_s \log \mathcal{F}(s\Sigma) = i((X_1(s))_{11} - (X_1(s))_{22}) - \frac{\alpha^2 - \beta^2}{s},$$

where X_1 is the residue term of X at infinity.

Only the 1-st order expansion of some vector-valued functions is needed (Not general!).

Proposition (X.-Zhang-Zhao, '25)

We have

$$\partial_s \log \mathcal{F}(s\Sigma) = i((X_1(s))_{11} - (X_1(s))_{22}) - \frac{\alpha^2 - \beta^2}{s},$$

where X_1 is the residue term of X at infinity.

Only the 1-st order expansion of some vector-valued functions is needed (Not general!). The proof relies on the following lemma.

Lemma (X.-Zhang-Zhao, '25)

$$\partial_{s}K_{s}^{(\alpha,\beta)}(x,y)=\frac{1}{2\pi}\frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^{2}}\left(A(sx)B(sy)+A(sy)B(sx)\right).$$

Proposition (X.-Zhang-Zhao, '25)

We have

$$\partial_s \log \mathcal{F}(s\Sigma) = i((X_1(s))_{11} - (X_1(s))_{22}) - \frac{\alpha^2 - \beta^2}{s},$$

where X_1 is the residue term of X at infinity.

Only the 1-st order expansion of some vector-valued functions is needed (Not general!). The proof relies on the following lemma.

Lemma (X.-Zhang-Zhao, '25)

$$\partial_{s} K_{s}^{(\alpha,\beta)}(x,y) = \frac{1}{2\pi} \frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^{2}} \left(A(sx)B(sy) + A(sy)B(sx) \right).$$

Ideas of proof: play several recurrence relations of the CH functions.

Proposition (X.-Zhang-Zhao, '25)

We have

$$\partial_s \log \mathcal{F}(s\Sigma) = i((X_1(s))_{11} - (X_1(s))_{22}) - \frac{\alpha^2 - \beta^2}{s},$$

where X_1 is the residue term of X at infinity.

Only the 1-st order expansion of some vector-valued functions is needed (Not general!). The proof relies on the following lemma.

Lemma (X.-Zhang-Zhao, '25)

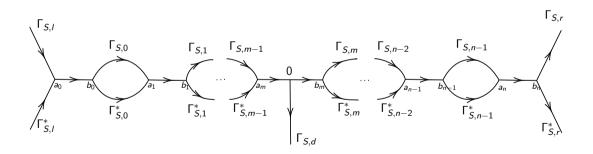
$$\partial_{s}K_{s}^{(\alpha,\beta)}(x,y) = \frac{1}{2\pi} \frac{\Gamma(1+\alpha+\beta)\Gamma(1+\alpha-\beta)}{\Gamma(1+2\alpha)^{2}} \left(A(sx)B(sy) + A(sy)B(sx)\right).$$

- Ideas of proof: play several recurrence relations of the CH functions.
- sine kernel: $\partial_s K_s^{(0,0)}(x,y) = \frac{\cos(s(x-y))}{\pi}$.

g-function mechanism is taken to normalize the RH problem for X.

g-function mechanism is taken to normalize the RH problem for X.

Opening lenses to obtain a solvable RH problem for ${\it P}$



Global parametrix for $P^{(\infty)}$

ullet A Szegö function ${\mathcal D}$ to deal with the Fisher-Hartwig singularity.

$$\mathcal{D}(z) := \exp \left\{ rac{\sqrt{\mathcal{R}(z)}}{2\pi i} \int_{\Sigma} rac{\mathcal{H}(\xi)}{\xi - z} \, \mathrm{d}\xi
ight\},$$

where

$$\mathcal{H}(z) := rac{\log z^{-2eta} + \operatorname{sgn}(z)(lpha - eta)\pi i + \zeta_j}{\sqrt{\mathcal{R}(z)}_+}, \quad z \in (a_j, b_j), \quad j = 0, 1, \ldots, n.$$

Global parametrix for $P^{(\infty)}$

ullet A Szegö function ${\mathcal D}$ to deal with the Fisher-Hartwig singularity.

$$\mathcal{D}(\mathsf{z}) := \exp\left\{rac{\sqrt{\mathcal{R}(\mathsf{z})}}{2\pi i}\int_{\Sigma}rac{\mathcal{H}(\xi)}{\xi-\mathsf{z}}\,\mathrm{d}\xi
ight\},$$

where

$$\mathcal{H}(z) := rac{\log z^{-2eta} + \operatorname{sgn}(z)(lpha - eta)\pi i + \zeta_j}{\sqrt{\mathcal{R}(z)}_+}, \quad z \in (a_j, b_j), \quad j = 0, 1, \ldots, n.$$

• Construction of $P^{(\infty)}$: a model RH problem solvable in terms of Riemann- θ function.

[Deift-Its-Zhou, '97]

Global parametrix for $P^{(\infty)}$

ullet A Szegő function ${\mathcal D}$ to deal with the Fisher-Hartwig singularity.

$$\mathcal{D}(z) := \exp \left\{ rac{\sqrt{\mathcal{R}(z)}}{2\pi i} \int_{\Sigma} rac{\mathcal{H}(\xi)}{\xi - z} \, \mathrm{d}\xi
ight\},$$

where

$$\mathcal{H}(z) := rac{\log z^{-2eta} + \operatorname{sgn}(z)(lpha - eta)\pi i + \zeta_j}{\sqrt{\mathcal{R}(z)}_+}, \quad z \in (a_j, b_j), \quad j = 0, 1, \ldots, n.$$

• Construction of $P^{(\infty)}$: a model RH problem solvable in terms of Riemann- θ function.

[Deift-Its-Zhou, '97]

• Some exact formulas related to $P^{(\infty)}$ are required.

Local parametrix at the edge points: Bessel model RH problem.

Local parametrix at the edge points: Bessel model RH problem.

Final transformation: Small norm RH problem for R.

Local parametrix at the edge points: Bessel model RH problem.

Final transformation: Small norm RH problem for R.

Proposition

$$\partial_{s} \log \mathcal{F}(s\Sigma) = i((X_{1}(s))_{11} - (X_{1}(s))_{22}) - \frac{\alpha^{2} - \beta^{2}}{s}$$

$$= -2s\gamma_{0} + i\left((P_{1}^{(\infty)})_{11} - (P_{1}^{(\infty)})_{22}\right) + \frac{i}{s}\left((R_{1}^{(1)})_{11} - (R_{1}^{(1)})_{22}\right) - \frac{\alpha^{2} - \beta^{2}}{s} + \mathcal{O}(s^{-2}),$$

where $*_1$ is the residue term of * at infinity.

Go back to the time average integral

$$I = rac{1}{T} \int_{\hat{z}}^T \mathcal{Y}(\vec{V}(t)) \, \mathrm{d}t, \quad \vec{V}(t) = t \vec{\Omega} + \vec{\tilde{\zeta}} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Go back to the time average integral

$$I = rac{1}{T} \int_{\hat{ec{c}}}^T \mathcal{Y}(ec{V}(t)) \, \mathrm{d}t, \quad ec{V}(t) = t ec{\Omega} + ec{\widetilde{\zeta}} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Analytical function $\mathcal Y$ on $\mathbb R^n/\mathbb Z^n$ admits a Fourier expansion

$$\mathcal{Y}(\vec{\mu}) = \sum_{\vec{m} \in \mathbb{Z}^n} \ell_{\vec{m}} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{\mu}}, \qquad \vec{\mu} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Go back to the time average integral

$$I = rac{1}{T} \int_{\widehat{\zeta}}^T \mathcal{Y}(ec{V}(t)) \, \mathrm{d}t, \quad ec{V}(t) = t ec{\Omega} + ec{\widetilde{\zeta}} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Analytical function \mathcal{Y} on $\mathbb{R}^n/\mathbb{Z}^n$ admits a Fourier expansion

$$\mathcal{Y}(\vec{\mu}) = \sum_{\vec{m} \in \mathbb{Z}^n} \ell_{\vec{m}} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{\mu}}, \qquad \vec{\mu} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Evaluate

$$I = \sum_{\substack{\vec{m} \in \mathbb{Z}^n \\ \vec{m}^T \vec{\Omega} \neq 0}} A + \sum_{\substack{\vec{m} \in \mathbb{Z}^n \\ \vec{m}^T \vec{\Omega} = 0}} \ell_{\vec{m}} e^{i\vec{m}^T \vec{\zeta}}.$$
 (Oscillatory term + Non-oscillatory term)

Go back to the time average integral

$$I = rac{1}{T} \int_{\widehat{\zeta}}^T \mathcal{Y}(ec{V}(t)) \, \mathrm{d}t, \quad ec{V}(t) = t ec{\Omega} + ec{\widetilde{\zeta}} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Analytical function \mathcal{Y} on $\mathbb{R}^n/\mathbb{Z}^n$ admits a Fourier expansion

$$\mathcal{Y}(\vec{\mu}) = \sum_{\vec{m} \in \mathbb{Z}^n} \ell_{\vec{m}} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{\mu}}, \qquad \vec{\mu} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Evaluate

$$I = \sum_{\substack{\vec{m} \in \mathbb{Z}^n \\ \vec{m}^{\mathrm{T}} \vec{\Omega} \neq 0}} A + \sum_{\substack{\vec{m} \in \mathbb{Z}^n \\ \vec{m}^{\mathrm{T}} \vec{\Omega} = 0}} \ell_{\vec{m}} e^{i\vec{m}^{\mathrm{T}} \vec{\zeta}}. \quad \text{(Oscillatory term + Non-oscillatory term)}$$

• Good diophantine property + bound arguments (for $\ell_{\vec{m}}$) $\Longrightarrow \sum_{\vec{m} \in \mathbb{Z}^n} A = \mathcal{O}(t^{-1})$.

Go back to the time average integral

$$I = rac{1}{T} \int_{\hat{z}}^T \mathcal{Y}(\vec{V}(t)) dt, \quad \vec{V}(t) = t \vec{\Omega} + \vec{\tilde{\zeta}} \in \mathbb{R}^n / \mathbb{Z}^n.$$

Analytical function \mathcal{Y} on $\mathbb{R}^n/\mathbb{Z}^n$ admits a Fourier expansion

$$\mathcal{Y}(\vec{\mu}) = \sum_{\vec{r} = \pi n} \ell_{\vec{m}} e^{2\pi i \vec{m}^{\mathrm{T}} \vec{\mu}}, \qquad \vec{\mu} \in \mathbb{R}^n / \mathbb{Z}^n.$$

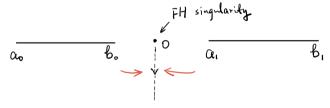
Evaluate

$$I = \sum_{\vec{m} \in \mathbb{Z}^n \atop \vec{n} \in \mathbb{Z}^n} A + \sum_{\vec{m} \in \mathbb{Z}^n \atop \vec{n} \in \mathbb{Z}^n} \ell_{\vec{m}} e^{i\vec{m}^T \vec{\tilde{\zeta}}}. \quad \text{(Oscillatory term + Non-oscillatory term)}$$

- Good diophantine property + bound arguments (for $\ell_{\vec{m}}$) $\Longrightarrow \sum_{\vec{m} \in \mathbb{Z}^n \atop \vec{n}} A = \mathcal{O}(t^{-1})$.
- Ergodic property + Birkhoff's ergodic theorem $\implies \sum_{\vec{m} \in \mathbb{Z}^n \atop \vec{n} = \vec{1}} \ell_{\vec{m}} e^{i\vec{m}^T \vec{\zeta}} = \ell_{\vec{0}}.$

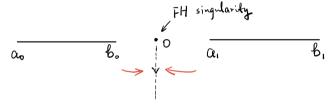
Future work

• Confluent hypergeometric kernel determinant with a FH singularity at the gap and the merging case at the FH singular point.



Future work

 Confluent hypergeometric kernel determinant with a FH singularity at the gap and the merging case at the FH singular point.



New differential identity → Other integrable kernel determinants for general genus g > 1 case?
 (Progress on the Airy kernel determinant)

Thanks for your attention!